4.5 Article

A new constitutively active mutant of AMP-activated protein kinase inhibits anoxia-induced apoptosis of vascular endothelial cell

期刊

HYPERTENSION RESEARCH
卷 32, 期 2, 页码 133-139

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/hr.2008.25

关键词

Akt; AMP-activated protein kinase; anoxia; apoptosis; vascular endothelial cell

资金

  1. Core Research for Evolutional Science and Technology
  2. Ministry of Education, Culture, Sports, Science, and Technology of Japan
  3. [19590855]
  4. [17659229]

向作者/读者索取更多资源

The inhibition of apoptotic changes in vascular endothelial cells is important for preventing vascular damage from hypoxia. AMP-activated protein kinase (AMPK) has recently been identified as playing a role in vascular protection. Although the chemical reagent 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) has been used to stimulate AMPK activity, AICAR has been associated with several nonspecific reactions. We therefore constructed a new constitutively active mutant of AMPK alpha 1 (NcaAMPK), which lacks the autoinhibitory domain in AMPK alpha 1 and in which threonine 172 has been replaced with aspartate. We investigated whether NcaAMPK has an anti-apoptotic effect in vascular endothelial cells under anoxic conditions. NcaAMPK, or green fluorescent protein (GFP) as a control, was overexpressed in human umbilical vein endothelial cells (HUVECs). After HUVECs were incubated for 40 h under normoxic or anoxic conditions, we examined cell viability, caspase 3/7 activity, and expression and phosphorylation levels of apoptosis-related proteins. Cell viabilities under anoxic conditions were improved in NcaAMPK-overexpressing cells. Anoxia increased caspase 3/7 activity, but NcaAMPK reduced this increase significantly. NcaAMPK overexpression increased protein kinase B/Akt Ser473 and endothelial nitric oxide synthase Ser1177 phosphorylation, but pretreatment with the nitric oxide synthase inhibitor N-G-nitro-L-arginine methyl ester (L-NAME) did not decrease the viability of NcaAMPK-overexpressing HUVECs. Furthermore, co-expression of a dominant-negative Akt reduced the improvement in cell viability and the suppression of poly (ADP-ribose) polymerase cleavage by NcaAMPK under anoxic conditions. In conclusion, NcaAMPK inhibited anoxia-induced apoptosis in vascular endothelial cells through Akt activation, suggesting that activation of AMPK might protect against ischemic vascular injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据