4.7 Article

Endothelial Cell Mineralocorticoid Receptors Regulate Deoxycorticosterone/Salt-Mediated Cardiac Remodeling and Vascular Reactivity But Not Blood Pressure

期刊

HYPERTENSION
卷 63, 期 5, 页码 1033-1040

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/HYPERTENSIONAHA.113.01803

关键词

deoxycorticosterone; endothelial cells; macrophages; receptors; mineralocorticoid

资金

  1. National Health and Medical Research Council of Australia (NHMRC) [1010034]
  2. Victorian Government's Operational Infrastructure Support Program
  3. Monash University
  4. NHMRC
  5. NHMRC Biomedical Career Development Fellowship
  6. High Blood Pressure Research Council of Australia

向作者/读者索取更多资源

Recent studies have identified novel pathological roles for mineralocorticoid receptors (MR) in specific cell types in cardiovascular disease. The mechanisms by which MR promotes inflammation and fibrosis involve multiple cell-specific events. To identify the role of MR in endothelial cells (EC-MR), the current study explored the vascular responses to aldosterone in wild-type (WT) and EC-null mice (EC-MRKO). Nitric oxide function was impaired in the thoracic aorta and mesenteric arteries of aldosterone-treated WT mice. Although endothelial nitric oxide function was equivalently impaired in the mesenteric arteries of aldosterone-treated EC-MRKO mice, endothelial function was unaffected in the aorta, suggesting a differential role for EC-MR depending on the vascular bed. Second, the contribution of EC-MR to cardiovascular inflammation, fibrosis, and hypertension was determined in WT and EC-MRKO treated with deoxycorticosterone/salt for 8 days or 8 weeks. At 8 days, loss of EC-MR prevented macrophage infiltration and the expression of proinflammatory genes in the myocardium. Increased cardiac fibrosis was not detected in either genotype at this time, mRNA levels of profibrotic genes were significantly lower in EC-MRKO mice versus WT. At 8 weeks, deoxycorticosterone/salt treatment increased macrophage recruitment and proinflammatory gene expression in WT but not in EC-MRKO. Collagen deposition and connective tissue growth factor expression were significantly reduced in EC-MRKO versus WT. Interestingly, systolic blood pressure was equivalently elevated in deoxycorticosterone/salt treated WT and EC-MRKO. Our data demonstrate that (1) EC-MR signaling contributes to vascular nitric oxide function in large conduit arteries but not in resistance vessels and (2) an independent role for EC-MR in the inflammatory and profibrotic response to deoxycorticosterone/salt.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据