4.7 Article

Sympathoexcitation by Brain Oxidative Stress Mediates Arterial Pressure Elevation in Salt-Induced Chronic Kidney Disease

期刊

HYPERTENSION
卷 59, 期 1, 页码 105-U259

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/HYPERTENSIONAHA.111.182923

关键词

hypertension; oxidative stress; brain; salt; sympathetic nervous system; chronic kidney disease

资金

  1. Japan Society for the Promotion of Science
  2. Takeda Science Foundation
  3. Japan Foundation for Applied Enzymology
  4. Daiichi Sankyo Company, Ltd.
  5. Grants-in-Aid for Scientific Research [22590908, 21790797] Funding Source: KAKEN

向作者/读者索取更多资源

Hypertension is very prevalent in chronic kidney disease and critical for its prognosis. Sympathoexcitation and oxidative stress have been demonstrated to be involved in chronic kidney disease. We have shown previously that sympathoexcitation by brain oxidative stress mediates arterial pressure elevation in the salt-sensitive hypertension model, Dahl salt-sensitive rats. Thus, we investigated whether sympathoexcitation by excessive brain oxidative stress could contribute to arterial pressure elevation in salt-induced chronic kidney disease model rats. Young (3-week-old) male Sprague-Dawley rats were randomly assigned to a uninephrectomy or sham operation and then subjected to either a normal salt (0.5%) or high-salt (8.0%) diet for 4 weeks. The young salt-loaded uninephrectomized rats exhibited sympathoexcitation, hypertension, and renal injury, proteinuria and global glomerulosclerosis together with tubulointerstitial damage. Under urethane anesthesia and artificial ventilation, renal sympathetic nerve activity, arterial pressure, and heart rate decreased to a greater degree in the salt-loaded uninephrectomized rats than in the nonsalt-loaded uninephrectomized rats and the salt-loaded or nonsalt-loaded sham-operated rats, when Tempol, a membrane-permeable superoxide dismutase mimetic, was infused acutely into the lateral cerebral ventricle. Oxidative stress in the hypothalamus, measured by lucigenin chemiluminescence, was also significantly greater. Furthermore, in the salt-loaded uninephrectomized rats, antioxidant treatment with chronic intracerebroventricular Tempol decreased sympathetic nerve activity and arterial pressure, which, in turn, led to a decrease in renal damage. Similar effects were elicited by treatment with oral moxonidine, the central sympatholytic agent. In conclusion, sympathoexcitation by brain oxidative stress may mediate arterial pressure elevation in salt-induced chronic kidney disease. (Hypertension. 2012;59:105-112.). Online Data Supplement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据