4.7 Article

Recovery of metals from spent refinery hydrocracking catalyst using adapted Aspergillus niger

期刊

HYDROMETALLURGY
卷 109, 期 1-2, 页码 65-71

出版社

ELSEVIER
DOI: 10.1016/j.hydromet.2011.05.008

关键词

Spent catalyst; Tungsten; Bioleaching; Aspergillus niger

资金

  1. National Iranian Oil Refining & Distribution Company (NIORDC) [88-1098]

向作者/读者索取更多资源

This study was designed to compare one-step, two-step and spent medium bioleaching of spent catalyst by adapted Aspergillus niger in batch cultures. Aspergillus niger, which was adapted to heavy metal ions, Ni, Mo. Fe, and W, was grown in medium containing up to 5% (w/v) of spent catalyst. The main lixiviant in bioleaching was gluconic acid, which was produced at all pulp densities in the one-step bioleaching process. Gluconic acid was also produced in the two-step bioleaching process when the spent catalyst was present at pulp densities greater than 1% (w/v). In the spent medium leaching, however, the primary agent was citric acid. The pulp density of the spent catalyst was varied, and this resulted in different amounts of solubilized metals. A total of 3% (w/v) spent catalyst generally produced maximum extraction yields in the one-step bioleaching process: the amounts of leached metals were 100% of W, 77.8% of Fe, 90.9% of Mo, 65.8% of Ni, and 14.2% of Al. The highest concentration of gluconic acid in this condition demonstrated that it was the primary bioleaching agent. Compared with chemical leaching at 1% pulp density, the fungus was more efficient at the leaching of W, Al, Mo, and Fe and equally efficient in the extraction of Ni. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据