4.5 Article

Electromagnetic induction prediction of soil salinity and groundwater properties in a Tunisian Saharan oasis

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/02626667.2012.717701

关键词

electromagnetic induction; ground conductivity meter EM38; soil salinity; oasis; gypsiferous soil; water table

资金

  1. Centre for Middle Eastern Studies through the MECW project at Lund University

向作者/读者索取更多资源

Electromagnetic induction measurements (EM) were taken in a saline gypsiferous soil of the Saharan-climate Fatnassa oasis (Tunisia) to predict the electrical conductivity of saturated soil extract (ECe) and shallow groundwater properties (depth, Dgw, and electrical conductivity, ECgw) using various models. The soil profile was sampled at 0.2 m depth intervals to 1.2 m for physical and chemical analysis. The best input to predict the log-transformed soil salinity (lnECe) in surface (0-0.2 m) soil was the EMh/EMv ratio. For the 0-0.6 m soil depth interval, the performance of multiple linear regression (MLR) models to predict lnECe was weaker using data collected over various seasons and years (R-a(2) = 0.66 and MSE = 0.083 dS m(-1)) as compared to those collected during the same period (R-a(2) = 0.97, MSE = 0.007 dS m(-1)). For similar seasonal conditions, for the Dgw-EMv relationship, R-2 was 0.88 and the MSE was 0.02 m for Dgw prediction. For a validation subset, the R-2 was 0.85 and the MSE was 0.03 m. Soil salinity was predicted more accurately when groundwater properties were used instead of soil moisture with EM variables as input in the MLR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据