4.6 Article

Actual evapotranspiration estimation by ground and remote sensing methods: the Australian experience

期刊

HYDROLOGICAL PROCESSES
卷 25, 期 26, 页码 4103-4116

出版社

WILEY
DOI: 10.1002/hyp.8391

关键词

eddy covariance; sap flux; arid land studies; hydrological cycles; OzFlux

向作者/读者索取更多资源

On average, Australia is a dry continent with many competing uses for water. Hence, there is an urgent need to know actual evapotranspiration (ETa) patterns across wide areas of agricultural and natural ecosystems, as opposed to just point measurements of ETa. The Australian Government has tasked the science agencies with operationally developing monthly and annual estimates of ETa and other hydrological variables, and with forecasting water availability over periods of days to decades, as part of its national water assessment programme. To meet these needs, Australian researchers have become leaders in developing large-area methods for estimating ETa at regional and continental scales. Ground methods include meteorological models, eddy covariance towers, sap flow sensors and catchment water balance models. Remote sensing methods use thermal infrared, mid infrared and/or vegetation indices usually combined with meteorological data to estimate ETa. Ground and remote sensing ETa estimates are assimilated into the Australian Water Resource Assessment, which issues annual estimates of the state of the continental water balance for policy and planning purposes. The best ETa models are estimated to have an error or uncertainty of 10% to 20% in Australia. Developments in Australian ETa research over the past 20 years are reviewed, and sources of error and uncertainty in current methods and models are discussed. Copyright (C) 2011 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据