4.5 Article

Development of a Darcy-Brinkman model to simulate water flow and tracer transport in a heterogeneous karstic aquifer (Val d'Orl,ans, France)

期刊

HYDROGEOLOGY JOURNAL
卷 18, 期 2, 页码 295-309

出版社

SPRINGER
DOI: 10.1007/s10040-009-0536-x

关键词

Karst; Numerical modelling; Solute transport; Brinkman equation; France

资金

  1. Centre National des Oeuvres Universitaires et Scolaires

向作者/读者索取更多资源

Darcy's law is the equation of reference widely used to model aquifer flows. However, its use to model karstic aquifers functioning with large pores is problematic. The physics occurring within the karstic conduits requires the use of a more representative macroscopic equation. A hydrodynamic model is presented which is adapted to the karstic aquifer of the Val d'Orl,ans (France) using two flow equations: (1) Darcy's law, used to describe water flow within the massive limestone, and (2) the Brinkman equation, used to model water flow within the conduits. The flow equations coupled with the transport equation allow the prediction of the karst transfer properties. The model was tested by using six dye tracer tests and compared to a model that uses Darcy's law to describe the flow in karstic conduits. The simulations show that the conduit permeability ranges from 5 Au 10(-6) to 5.5 Au 10(-5) m(2) and the limestone permeability ranges from 8 Au 10(-11) to 6 Au 10(-10) m(2). The dispersivity coefficient ranges from 23 to 53 m in the conduits and from 1 to 5 m in the limestone. The results of the simulations carried out using Darcy's law in the conduits show that the dispersion towards the fractures is underestimated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据