4.6 Article

River-reservoir transition zones are nitrogen fixation hot spots regardless of ecosystem trophic state

期刊

HYDROBIOLOGIA
卷 625, 期 -, 页码 61-68

出版社

SPRINGER
DOI: 10.1007/s10750-008-9696-2

关键词

Reservoir limnology; Acetylene reduction; Cyanobacteria; N:P ratio; Reservoir zonation

资金

  1. City of Waco
  2. Texas Commission on Environmental Quality (TCEQ)

向作者/读者索取更多资源

Reservoir hydrodynamics may create heterogeneity in nitrogen (N) fixation along the riverine-transition-lacustrine gradient. In particular, N fixation may be highest in reservoir transition zones where phytoplankton biomass is also expected to be relatively high. We investigated spatial patterns of N fixation in three Texas (USA) reservoirs of varying trophic state. We sampled 6-9 stations along the longitudinal axes of the major inflows and measured N fixation using the acetylene reduction method. Total N, total phosphorus (P), and algal biomass (as chlorophyll-a) were also measured at each sample location. Measurable N fixation was observed in all reservoirs and was light-dependent. Nitrogen fixation was consistently low in the riverine zone, highest in the transition zone, and low in lacustrine zone of all reservoirs. The absolute magnitude of N fixation was similar in two relatively unproductive reservoirs and an order of magnitude higher in the eutrophic reservoir. A similar pattern was observed in mean nutrient and chlorophyll-a concentrations among reservoirs. However, chlorophyll-a concentrations were highest in the riverine zone of each reservoir and exhibited a monotonic decrease in the downstream direction. Maximum chlorophyll-a concentrations did not coincide with maximum N fixation rates. Results of our study indicate that reservoir transition zones can be biogeochemical hot spots for planktonic N fixation, regardless of trophic state. Therefore, transition zones may be the most at risk locations for water quality degradation associated with increased reservoir productivity. Water quality managers and aquatic scientists should consider the spatial heterogeneity imposed by unique hydrodynamic controls in reservoir ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据