4.5 Article

Sarcolemma instability during mechanical activity in Largemyd cardiac myocytes with loss of dystroglycan extracellular matrix receptor function

期刊

HUMAN MOLECULAR GENETICS
卷 20, 期 17, 页码 3346-3355

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddr240

关键词

-

资金

  1. National Institutes of Health [HL-080388]
  2. American Heart Association [0825876G]

向作者/读者索取更多资源

The abnormal glycosylation and loss of extracellular matrix receptor function of the protein dystroglycan (DG) lead to the development of muscular dystrophy and cardiomyopathy. Dystroglycan is an important receptor for extracellular matrix proteins, such as laminin, in the basement membrane surrounding muscle. Large(myd) mice have a null mutation in a gene encoding the glycosyltransferase LARGE that results in abnormal glycosylation of alpha-DG and phenotypes similar to those in human alpha-DG glycosylation-deficient muscular dystrophy. Here, we show that Large(myd) hearts with the loss of DG extracellular matrix receptor function display a cardiomyopathy characterized by myocyte damage in patches of cells positive for membrane impermeant dyes. To examine the cellular mechanisms, we show that isolated adult cardiac myocytes from Large(myd) mice retain normal laminin-dependent cell adhesion, cell surface laminin deposition and basement membrane assembly. However, although isolated adult cardiac myocytes with the loss of alpha-DG glycosylation adhere normally to laminin substrates both passively and in the presence of mechanical activity, Large(myd) myocytes rapidly take up membrane impermeant dye following cyclical cell stretching. Therefore, while other cell surface laminin receptors are likely responsible for myocardial cell adhesion to the basement membrane, DG has a unique function of stabilizing the cardiac myocyte plasma membrane during repetitive mechanical activity by tightly binding the transmembrane dystrophin-glycoprotein complex to the extracellular matrix. This function of DG to stabilize the myocyte membrane during normal physiologic cell length changes is likely critical for the prevention of the myocardial damage and subsequent remodeling observed in alpha-DG glycosylation-deficient muscular dystrophies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据