4.5 Article

A regulatory SNP of the BICD1 gene contributes to telomere length variation in humans

期刊

HUMAN MOLECULAR GENETICS
卷 17, 期 16, 页码 2518-2523

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddn152

关键词

-

资金

  1. British Heart Foundation Funding Source: Medline

向作者/读者索取更多资源

Telomeres are repetitive sequences of variable length at the ends of chromosomes involved in maintaining their integrity. Telomere dysfunction is associated with increased risk of cancer and other age-related diseases. Telomere length is an important determinant of telomere function and has a strong genetic basis. We previously carried out a genome-wide linkage analysis of mean leukocyte telomere length, and identified a 12 cm quantitative-trait locus affecting telomere length on human chromosome 12. In the present study we confirmed linkage to this locus in an extended sample (380 families, 520 sib-pairs, maximum LOD score 4.3). Fine-mapping identified a 51 kb region of association within intron 1 of the Bicaudal-D homolog 1 (BICD1, MIM 602204) gene. The strongest association (P= 1.9 x 10(-5)) was with SNP rs2630578 where the minor allele C (frequency 0.21) was associated with telomeres that were shorter by 604 (+/- 204) base pairs, equivalent to similar to 15-20 years of age-related attrition in telomere length. Subjects carrying the C allele for rs2630778 had 44% lower BICD1 mRNA levels in their leukocytes compared with GG homozygotes (P = 0.004). BICD1 is involved in Golgi-to-endoplasmic reticulum vacuolar transport. Previous studies have implicated vacuolar genes in telomere length homeostasis in yeast. Our study indicates that BICD1 plays a similar role in humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据