4.6 Article

The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes

期刊

HUMAN GENETICS
卷 126, 期 6, 页码 751-761

出版社

SPRINGER
DOI: 10.1007/s00439-009-0728-4

关键词

-

资金

  1. Federal Agency for Physical Culture and Sport of the Russian Federation
  2. Ministry of Education and Science of the Russian Federation [02.522.11.2004]

向作者/读者索取更多资源

Endurance performance is a complex phenotype subject to the influence of both environmental and genetic factors. Although the last decade has seen a variety of specific genetic factors proposed, many in metabolic pathways, each is likely to make a limited contribution to an 'elite' phenotype: it seems more likely that such status depends on the simultaneous presence of multiple such variants. The aim of the study was to investigate individually and in combination the association of common metabolic gene polymorphisms with endurance athlete status, the proportion of slow-twitch muscle fibers and maximal oxygen consumption. A total of 1,423 Russian athletes and 1,132 controls were genotyped for 15 gene polymorphisms, of which most were previously reported to be associated with athlete status or related intermediate phenotypes. Muscle fiber composition of m. vastus lateralis in 45 healthy men was determined by immunohistochemistry. Maximal oxygen consumption of 50 male rowers of national competitive standard was determined during an incremental test to exhaustion on a rowing ergometer. Ten 'endurance alleles' (NFATC4 Gly160, PPARA rs4253778 G, PPARD rs2016520 C, PPARGC1A Gly482, PPARGC1B 203Pro, PPP3R1 promoter 5I, TFAM 12Thr, UCP2 55Val, UCP3 rs1800849 T and VEGFA rs2010963 C) were first identified showing discrete associations with elite endurance athlete status. Next, to assess the combined impact of all 10 gene polymorphisms, all athletes were classified according to the number of 'endurance' alleles they possessed. The proportion of subjects with a high (a parts per thousand yen9) number of 'endurance' alleles was greater in the best endurance athletes compared with controls (85.7 vs. 37.8%, P = 7.6 x 10(-6)). The number of 'endurance' alleles was shown to be positively correlated (r = 0.50; P = 4.0 x 10(-4)) with the proportion of fatigue-resistant slow-twitch fibers, and with maximal oxygen consumption (r = 0.46; P = 7.0 x 10(-4)). These data suggest that the likelihood of becoming an elite endurance athlete depends on the carriage of a high number of endurance-related alleles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据