4.6 Article

Coalescence, Cracking, and Crack Healing in Drying Dispersion Droplets

期刊

LANGMUIR
卷 31, 期 15, 页码 4419-4428

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.5b00438

关键词

-

资金

  1. Dutch Polymer Institute (DPI) [781]

向作者/读者索取更多资源

The formation of a uniform film from a polymer dispersion is a complex phenomenon involving the interplay of many processes: evaporation and resulting fluid flows through confined geometries, particle packing and deformation, coalescence, and cracking. Understanding this multidimensional problem has proven challenging, precluding a clear understanding of film formation to date. This is especially true for drying dispersion droplets, where the particular geometry introduces additional complexity such as lateral flow toward the droplet periphery. We study the drying of these droplets using a simplified approach in which we systematically vary a single parameter: the glass transition temperature (T-g) of the polymer. We combine optical with scanning electron microscopy to elucidate these processes from the macroscopic down to the single-particle level, both qualitatively and quantitatively, over times ranging from seconds to days. Our results indicate that the polymer T-g has a marked influence on the time evolution of particle deformation and coalescence, giving rise to a distinct and sudden cracking transition. Moreover, in cracked droplets it affects the frequently overlooked time scale of crack healing, giving rise to a second transition from self-healing to permanently cracked droplets. These findings are in line with the classical Routh-Russel model for film formation yet extend its scope from particle-level dynamics to long-range polymer flow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据