4.6 Article

Microfluidic Investigation of Nanoparticles' Role in Mobilizing Trapped Oil Droplets in Porous Media

期刊

LANGMUIR
卷 31, 期 51, 页码 13673-13679

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.5b03733

关键词

-

资金

  1. Nanoparticles for Subsurface Engineering Industrial Affiliates Project at the University of Texas at Austin

向作者/读者索取更多资源

The flow of multiple fluid phases in porous media often results in trapped droplets of the nonwetting phase. Recent experimental and theoretical studies have suggested that nanoparticle aqueous dispersions may be effective at mobilizing trapped droplets of nonwetting fluid (oil) in porous media. Hypotheses to explain the observation include the nanoparticles' modification of solid wettability, droplet stabilization, and changes in interfacial tension and interface rheology. However, because it is difficult to observe droplet behavior on the pore scale, how those factors contribute to oil droplet mobilization has not been fully understood. In this work, we investigated the nanoparticles' role in nanoparticle-based improved recovery of the nonwetting phase through the direct observation of the mobilization of trapped oil droplets in microfluidic structures that mimic pore throat geometries. A microfluidic platform was constructed for this study, on which different displacing liquids including aqueous surfactant solutions and nanoparticle suspensions were tested. We found that the nanoparticle concentration is positively related to the oil mobilization efficiency. An approximate mathematical model for calculating the maximum size of an oil droplet trapped in a pore throat geometry for a fixed flow rate matches the experiment result for displacing liquid with no nanoparticles. The model still holds when the nanoparticle suspension is a displacing liquid. We concluded that nanoparticles mobilize oil in these geometries in a mechanism similar to that for surfactants, which is an increase in capillary number rather than an effect of other fluidic or interfacial properties such as the dynamics adsorption of nanoparticle or dilational rheology of a nanoparticle-adsorbed interface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据