Integration and testing of next generation post-800V electric powertrains (2ZERO Partnership)

基金名称
Integration and testing of next generation post-800V electric powertrains (2ZERO Partnership)
资助机构
Horizon Europe Framework Programme (HORIZON)
European Commission
研究领域
Digital Agenda
Clean vehicles
Sustainable transport - general
Co-programmed European Partnerships
截止日期
2024-04-18 (已过期)
基金规模
€15000000
申请资格

General conditions


1. Admissibility conditions: described in Annex A and Annex E of the Horizon Europe Work Programme General Annexes


Proposal page limits and layout: described in Part B of the Application Form available in the Submission System


2. Eligible countries: described in Annex B of the Work Programme General Annexes


A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon Europe projects. See the information in the Horizon Europe Programme Guide.


3. Other eligibility conditions: described in Annex B of the Work Programme General Annexes


If projects use satellite-based earth observation, positioning, navigation and/or related timing data and services, beneficiaries must make use of Copernicus and/or Galileo/EGNOS (other data and services may additionally be used).


4. Financial and operational capacity and exclusion: described in Annex C of the Work Programme General Annexes


5. Evaluation and award:


  • Award criteria, scoring and thresholds are described in Annex D of the Work Programme General Annexes



  • Submission and evaluation processes are described in Annex F of the Work Programme General Annexes and the Online Manual



  • Indicative timeline for evaluation and grant agreement: described in Annex F of the Work Programme General Annexes



6. Legal and financial set-up of the grants: described in Annex G of the Work Programme General Annexes


Specific conditions


7. Specific conditions: described in the specific topic of the Work Programme




Documents


Call documents:


Standard application form — call-specific application form is available in the Submission System


Standard application form (HE RIA, IA)


Standard application form (HE RIA IA Stage 1)


Standard application form (HE CSA)


Standard application form (HE CSA Stage 1)


Standard evaluation form — will be used with the necessary adaptations


Standard evaluation form (HE RIA, IA)


Standard evaluation form (HE CSA)


Standard evaluation form (HE RIA, IA and CSA Stage 1)


MGA


HE General MGA v1.0


HE Unit MGA v1.0


Call-specific instructions


Detailed budget table (HE LS)


Information on financial support to third parties (HE)


Additional documents:


HE Main Work Programme 2023–2024 – 1. General Introduction


HE Main Work Programme 2023–2024 – 8. Climate, Energy and Mobility


HE Main Work Programme 2023–2024 – 13. General Annexes


HE Programme Guide


HE Framework Programme and Rules for Participation Regulation 2021/695


HE Specific Programme Decision 2021/764


EU Financial Regulation


Rules for Legal Entity Validation, LEAR Appointment and Financial Capacity Assessment


EU Grants AGA — Annotated Model Grant Agreement


Funding & Tenders Portal Online Manual


Funding & Tenders Portal Terms and Conditions


Funding & Tenders Portal Privacy Statement

基金编号
HORIZON-CL5-2024-D5-01-02
说明
ExpectedOutcome:

Next generation powertrain architectures using voltages 1200 V and above might contribute to the achievement of safer, higher-performing and more sustainable end products to serve high volume markets. A holistic approach to the whole powertrain should contribute to determining the optimal next generation voltage level. Project results are expected to contribute to all the following outcomes:

  • Very fast charging, ultra-efficient electric vehicles (EVs) for broad mass markets, taking into account volume effects and cost optimized architectures for future markets.
  • A cost reduction of a minimum of 20% of power electronic modules and inverters for a given power, as well as for the whole powertrain, should be demonstrated (in comparison to the cost of the best current-generation or close to market components and architectures at proposal submission time).
  • Fast charging of a mass market C segment vehicle demonstrator from 20 to 80 percent in 10 minutes with currently available 350kW chargers.
  • Practical range increases over travel time (~20 percent increase with the same battery weight) with overall higher efficiency and easier thermal management of the whole powertrain allowing reasonably sized, lower cost and environmentally friendly batteries to perform long trips conveniently.
  • Significant advancements in efficiency (reduction of losses by 25%) versus the state of the art of the targeted application with a special attention to partial load condition in EVs and charging stations alike.
  • Backwards compatibility and reliability aspects.
  • Improved application safety and robustness that contribute to a better user buy-in.
  • Improved resource efficiency with better lifecycle impact and recycling capability ¬ contributing to a circular economy approach.

Scope:

In the last decade, the more and more demanding power and application requirements led to an increase of board net HV voltage from an initial 400V level to 800V in the latest electric vehicles, already trickling down to lower categories. Significantly higher voltages (indicatively, in the 1200V region) may be the next logical step and become standard in the next decade, providing benefits in terms of efficiency, copper use and weight. If not properly managed, they could have a constraining impact on the overall architecture especially in terms of DC charging and efficiency for low power use. Thus, new challenges for the powertrain arise in the areas of the motor, battery, cabling, couplers etc. as well as in electromagnetic compatibility and the development and integration of new power semiconductors.

To successfully address the expected outcomes in the constant drive to improve efficiency and performance while increasing affordability, proposals are expected to address several of the following aspects capable of demonstrating the achievement of the intended objectives at system level:

  • Assess in a holistic way the positive and negative impacts of higher voltage levels at vehicle and powertrain level, defining the best option for the post-800V EV generation.
  • Development and integration of power-electronic components with new concepts for component miniaturisation and modularity. Also, solutions that can transition rapidly from modular to integrated systems need to be identified, depending on demand and eco-balance.
  • Topologies adapted to advanced wide-bandgap semiconductors and new materials, leading to higher power density.
  • Modular powertrain platforms, with the aim of coming closer to a full mechanical, electrical or thermal integration of the three main systems (electric motor, power electronics systems and battery pack) benefitting from the smaller sizes and cooling demands due to higher voltage.
  • Defining suitable testing and validation procedures on component, powertrain or vehicle level and demonstrating them on a suitable use case. Furthermore, the projects should identify and analyse potential regulatory aspects and barriers to contribute to a definition of common EU standards for system validations.
  • Small-sized, ‘ready for integration’ power modules at the best system fitting position (e.g. e-motor or battery) for greater design flexibility while optimizing costs.
  • Packaging and coupler solutions e.g., substrates, moulding epoxy, electrical interconnections, adapted for higher voltages, increased isolation demands, high-frequency switching, frequent thermal cycling, elevated temperatures etc.
  • Heat spreading technologies for short power pulses/ heat dissipation approaches for long duration pulses, long acceleration phases.

Exploitation of outcomes, and knowledge from ECSEL/KDT partnership[1] projects should be foreseen where applicable, as well as feedback in terms of future needs to achieve the project outcomes should problems be encountered. The development of the needed semiconductors, however, is not part of this topic's funding, and the proposal is expected to specify the components that the involved semiconductor suppliers guarantee to provide for the research activities.

This topic implements the co-programmed European Partnership on ‘Towards zero emission road transport’ (2ZERO). As such, projects resulting from this topic will be expected to report on the results to the European Partnership ‘Towards zero emission road transport’ (2ZERO) in support of the monitoring of its KPIs.


Specific Topic Conditions:

Activities are expected to achieve TRL 5 by the end of the project – see General Annex B.


[1] https://www.kdt-ju.europa.eu/

基金资源

Purdue Grant Writing Lab: Introduction to Grant Writing 打开链接
University of Wisconsin Writing Center: Planning and Writing a Grant Proposal 打开链接

快速分享


将截止日期添加到日历

2024-04-18

你有想要在此列出的基金申报机会吗?

立即提交你的基金合作意向,发送至 support@peeref.com,我们会尽快为你审核。


Publish scientific posters with Peeref

Peeref publishes scientific posters from all research disciplines. Our Diamond Open Access policy means free access to content and no publication fees for authors.

Learn More

Add your recorded webinar

Do you already have a recorded webinar? Grow your audience and get more views by easily listing your recording on Peeref.

Upload Now