4.7 Article

Electrospun potato starch nanofibers for thyme essential oil encapsulation: antioxidant activity and thermal resistance

期刊

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE
卷 100, 期 11, 页码 4263-4271

出版社

WILEY
DOI: 10.1002/jsfa.10468

关键词

starch; electrospinning; phenolic compound; starch nanomaterial

资金

  1. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) [001]
  2. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ) [306378/2015-9]
  3. Fundacao de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS) [17/255100009126]

向作者/读者索取更多资源

BACKGROUND Thyme essential oil (TEO) is an excellent natural substitute for synthetic compounds to maintain the quality and safety of food products. It acts as an antioxidant agent. We aimed to nanoencapsulate TEO at concentrations of 1%, 3%, and 5% (v/w, dry basis) in electrospun nanofibers made of starch (50% w/v) and formic acid (75% v/v). The rheological parameters of the fiber-forming solutions were measured, and various physical and chemical properties of the nanofibers were analyzed. RESULTS The starch/TEO nanofibers presented homogeneous morphology. The starch nanofibers showed high encapsulation efficiency (EE, 99.1% to 99.8%), which, along with the Fourier transform infra-red (FTIR) spectrum and thermogravimetric analysis (TGA) analysis, indicate strong protection of the phenolic compounds of TEO. Nanofibers with 5% TEO retained up to 50% of the phenolic compounds after exposure to thermal treatment. The antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals of the starch/TEO nanofibers varied from 11.1% to 14.2% and the inhibition values (29.8%, P <= 0.05) against hydroxyl radicals were the same for free TEO and the nanofibers. CONCLUSION Owing to these properties, electrospun starch/TEO nanofibers can be applied in food products or food packaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据