4.8 Article

Dicarboxylic acid as a linker to improve the content of amorphous drug in drug-in-polymer film: Effects of molecular mobility, electrical conductivity and intermolecular interactions

期刊

JOURNAL OF CONTROLLED RELEASE
卷 317, 期 -, 页码 142-153

出版社

ELSEVIER
DOI: 10.1016/j.jconrel.2019.11.033

关键词

Olanzapine; Amorphous solid dispersions; Crystallization inhibition; Molecular mobility; Electrical conductivity; Intermolecular interactions

资金

  1. Research Foundation of Education Department of Liaoning Provence [201610163L04]

向作者/读者索取更多资源

Amorphous solid dispersion (ASD) is a well-established approach to improve the dissolution rate of the drugs with low water solubility. However, the application of the ASD was hindered by the low drug content and high risk of re-crystallization of drugs. The purpose of this research was to develop an ASD film with high content of amorphous olanzapine (OLN) for oral delivery. To overcome the high crystallization tendency of OLN in polyvinyl alcohol (PVA) films, three dicarboxylic acids (succinic acid (Suc), fumaric acid (Fum) and malic acid (Mal)) were introduced in the drug-in-polymer system as linkers between the drug and the polymer. The influence of the linkers on the re-crystallization of OLN in PVA films was evaluated by polarized light microscopy (PLM) and x-ray diffraction (XRD). Then, the possible mechanisms of crystallization inhibition were discussed based on the results of dielectric spectroscopy (DES), differential scanning calorimetry (DSC), attenuated total reflectance Fourier transform infrared (ATR-FTIR), Raman spectroscopy and molecular modeling. Finally, the effect of the linkers on the in vitro dissolution of the OLN-in-PVA films was studied in simulant saliva, and the in vivo performance of the optimal formulation was evaluated in rats. The results showed that OLN-in-PVA film have lower molecular mobility, lower electrical conductivity and stronger intermolecular interactions with the existence of Mal, which led to a better crystallization inhibition of OLN in PVA films. The re-crystallization of OLN in PVA films decreased the dissolution rate of OLN in simulant saliva. The in vivo performance of the optimal formulation was similar with that of OLN solution in rats. This study introduced a novel strategy to reduce the risk of drug re-crystallization in ASD, and also provided a deeper insight into the mechanisms of crystallization inhibition in ASD. The results will improve the judicious selection of excipients in pharmaceutical formulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据