4.6 Review

The Role of SIRT3 in the Brain Under Physiological and Pathological Conditions

期刊

FRONTIERS IN CELLULAR NEUROSCIENCE
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fncel.2018.00196

关键词

SIRT3; mitochondria; oxidative stress; neurodegenerative disease; pharmacology

资金

  1. Ontario Graduate Scholarship
  2. Ontario Heart and Stroke Foundation Scholarship
  3. Norman Stuart Robertson Fellowship
  4. Undergraduate Research Opportunity Program Scholarship
  5. Heart and Stroke Foundation of Canada [NA-7041]
  6. Peterborough K.M. Hunter Graduate Scholarship

向作者/读者索取更多资源

Sirtuin enzymes are a family of highly seven conserved protein deacetylases, namely SIRT1 through SIRT7, whose enzymatic activities require the cofactor nicotinamide adenine dinucleotide (NAD(+)). Sirtuins reside in different compartments within cells, and their activities have been shown to regulate a number of cellular pathways involved in but not limited to stress management, apoptosis and inflammatory responses. Given the importance of mitochondrial functional state in neurodegenerative conditions, the mitochondrial SIRT3 sirtuin, which is the primary deacetylase within mitochondria, has garnered considerable recent attention. It is now clear that SIRT3 plays a major role in regulating a host of mitochondrial molecular cascades that can contribute to both normal and pathophysiological processes. However, most of the currently available knowledge on SIRT3 stems from studies in non-neuronal cells, and the consequences of the interactions between SIRT3 and its targets in the CNS are only beginning to be elucidated. In this review, we will summarize current advances relating to SIRT3, and explore how its known functions could influence brain physiology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据