4.3 Article

Implementing an In Situ Alkaline Transesterification Method for Canola Biodiesel Quality Screening

期刊

JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY
卷 87, 期 11, 页码 1351-1358

出版社

WILEY
DOI: 10.1007/s11746-010-1607-9

关键词

Canola; In situ transesterification; FAME; Biodiesel; ASTM D6751; Cold flow properties

资金

  1. North Dakota Agricultural Experiment Station
  2. North Dakota Center of Excellence for Oilseed Development

向作者/读者索取更多资源

Increasing demand for canola (Brassica napus) as an edible oil crop and biodiesel (B100) feedstock has encouraged genetic development for increased oil yields and expanded acreage in the US Northern Plains. Crop production environment and plant genetics influence metabolism and fatty acid composition, but the influence of this interaction on the resulting fatty acid methyl esters (FAME) is not clearly understood. The objective of this study was to develop a canola in situ transesterification (TE) method for facilitating the identification of genetic, abiotic or biotic factors impacting B100 quality, and to evaluate FAME quality properties from conventional TE (degummed oil) and in situ TE methods. In situ reactions containing 40 g canola flour conducted for 6 h at 60 A degrees C with a 275:1:1.05 M ratio of methanol:triacylglycerol (TAG):KOH provided 80% conversion of seed lipid to FAME. Replicated reactions provided sufficient FAME volume for measuring several ASTM D6751-09 standards including cloud point, kinematic viscosity, acid value, moisture content, oxidative stability, and total glycerin, but adjustments are necessary to provide sufficient volumes for routine analysis of cold soak filtration test. The established in situ protocol would permit weekly analysis of 40 samples and the in situ TE method provides an opportunity to evaluate the impact of genetic or environmental factors on B100 quality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据