

8th Asian Symposium on Advanced Materials, Novosibirsk

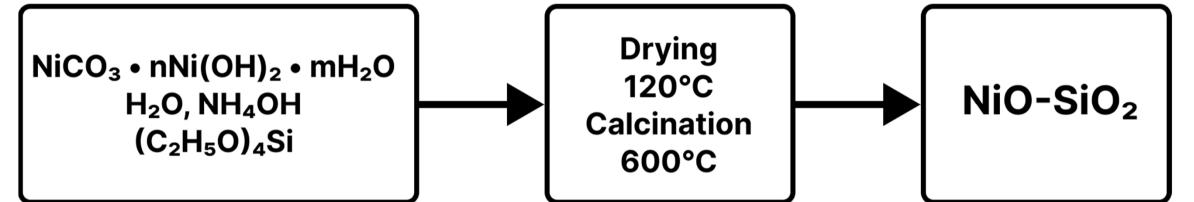
2023, 3-7 July

Nickel-tin alloy catalysts for liquid organic hydrogen carrier dehydrogenation

Stepanenko S.A., Koskin A.P., Alekseeva M.V., Kaichev V.V. and Yakovlev V.A.

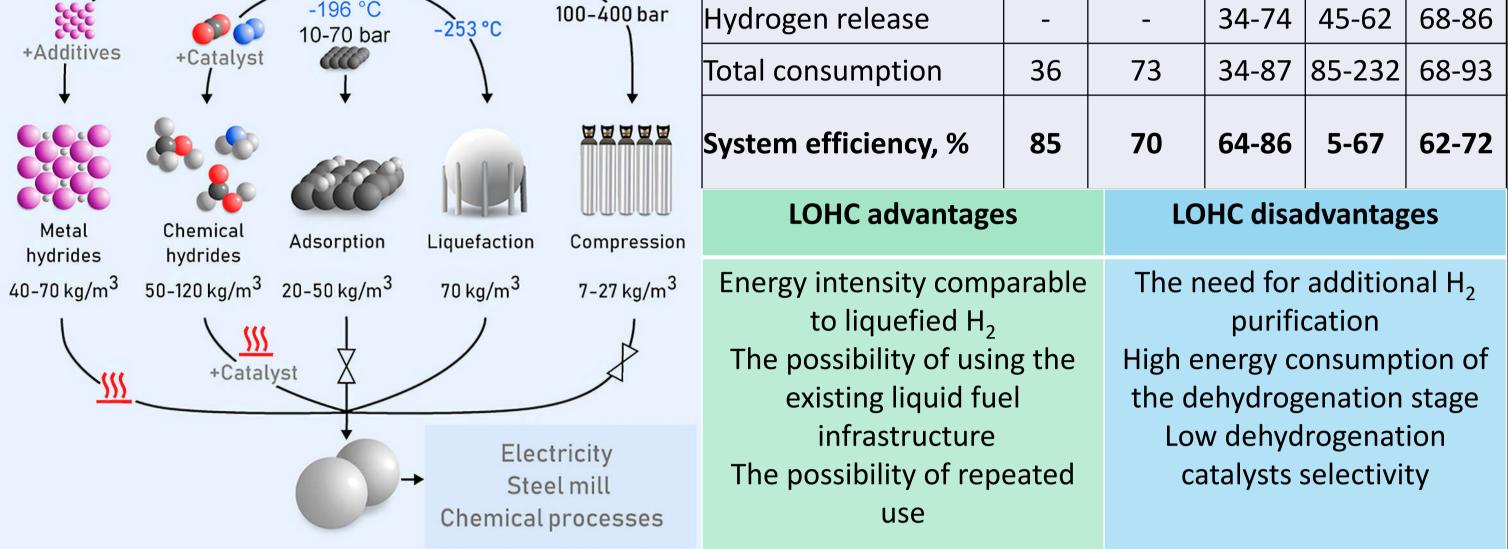
Boreskov Institute of Catalysis, Novosibirsk E-mail: stepanenko@catalysis.ru

Introduction

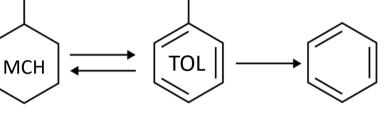

Currently, there has been a significant increase in interest in alternative energy sources, primarily hydrogen, as a fuel with a zero-carbon dioxide emission [1]. The development of hydrogen energy, in addition to creating methods for H₂ production [2], implies the elaboration of methods for its efficient storage and transportation [3]. There is a wide range of developed technologies: storage of hydrogen in a compressed (CGH₂) [4], liquefied (LH₂) [5], and physiosorbed state [6]. Hydrogen can also be stored in the composition of hydrides [7], ammonia, methanol, formic acid, and reversible liquid organic hydrogen carriers (LOHC) [8]. Among all these methods, the LH2 technology is currently the most widely used. However, the use of expensive pressure vessels or cryogenic systems [3,9] and a capital-intensive liquefaction process (40–50% of capital costs) [10] is a key problem of this technology. According to a number of feasibility studies, LOHC technology is a promising alternative to LH2 technology for large-scale storage and transportation of hydrogen [11]. Indeed, the use of the LOHC technology has a number of advantages: it provides energy-efficient reversibility of the hydrogen separation at its high specific content [12,13]. There is no need for additional purification of hydrogen from concomitant gases. It is possible to use the existing fuel storage and transportation infrastructure [13]. In this work, high-loaded nickel catalysts modified with Sn have been synthesized and tested in the dehydrogenation of methylcyclohexane (MCH) as a liquid organic hydrogen carrier. The catalyst composition and its reduction temperature were optimized which allowed to achieve high selectivity of the dehydrogenation. The genesis of the NiO-SiO₂ catalytic systems during their modification with Sn and reductive activation in hydrogen has been studied.

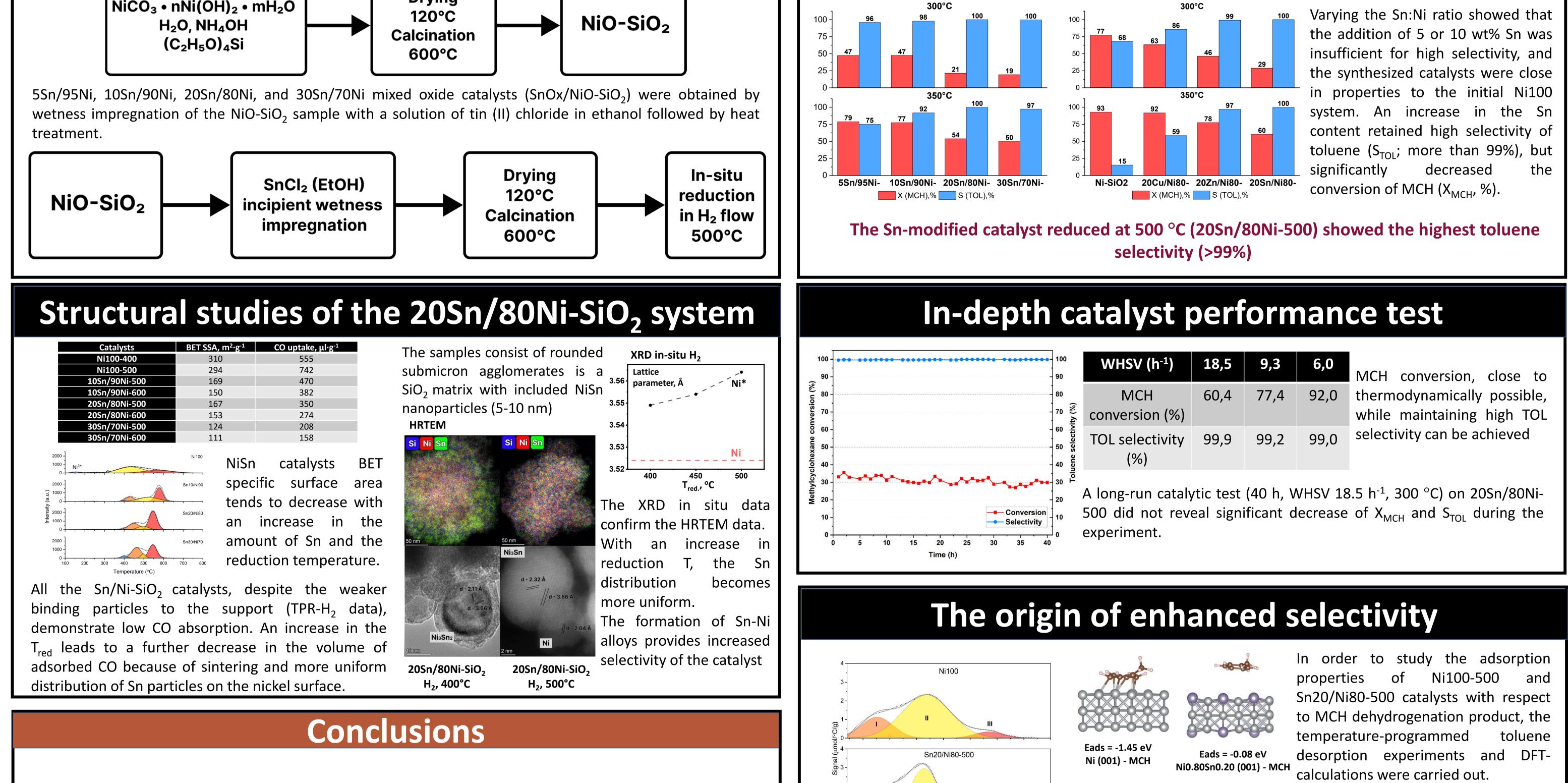
Hydrogen storage and transport technologies

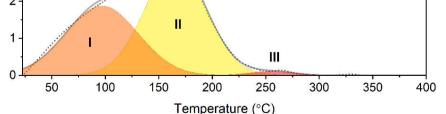
Large-scale hydrogen storage	Energy consumption, kJ/molH ₂	CGH2	LH2	LaNi5, Mg2Ni	NH3	LOHC
	Hydrogen storage	36	73	0-13	40-170	0-7


Synthesis of catalytic systems

The heterophase sol-gel technique [14] was used to prepare the NiO-SiO₂ ("Ni100") catalyst with SiO₂ as a stabilizing agent.






Comparative tests of catalyst performance

The dehydrogenation process was performed in a fixed-bed continuous flow reactor in a temperature range of 250–350°C under ambient pressure.

It was shown that the NiSn catalyst with optimal composition (atomic Ni:Sn ratio 5:1) reduced at 500 °C provides the selectivity of the dehydrogenation over 99.9% and the conversion of MCH of 87.4% at WHSV = 6.2 h⁻¹ and temperature 350 °C. The achieved selectivity exceeds the selectivity of all the previously studied Cu- and Znmodified analogs based on NiO-SiO₂ and is comparable with selectivity of Pt-based catalysts. The high selectivity of the bimetallic NiSn-based catalyst is due to the formation of NiSn solid solutions.

It is assumed that an increase in the process selectivity is associated with a decrease in the adsorption energy of the reaction product (TOL)

Acknowledgement

This research was funded by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis (projects AAAA-A21-121011390007-7).

References				
1. Longden, T. et. al. Appl. Energy 2022, 306, 118145, doi:10.1016/j.apenergy.2021.118145.	8. Wei, D. et. al. ACS Energy Lett. 2022, 7, 3734–3752, doi:10.1021/acsenergylett.2c01850.			
 Fajrina, N. et. al. Int. J. Hydrogen Energy 2019, 44, 540–577, doi:10.1016/j.ijhydene.2018.10.200. Ab dia Z at al. Science 2021, 24, 1020(C, doi:10.1016/j.ijaci.2021.1020(C)) 	 9. Brückner, N. et. al. ChemSusChem 2014, 7, 229–235, doi:https://doi.org/10.1002/cssc.201300426. 10. Hang, X. et. al. Int. I. Hadragen Engrav 2021, 46, 22014, 22028, doi:10.1016/j.jibadana.2021.07.128 			
 3. Abdin, Z. et. al. iScience 2021, 24, 102966, doi:10.1016/j.isci.2021.102966. 4. Elberry, A.M. et. al. Int. I. Hydrogen Energy 2021, 46, 15671, 15600, doi:10.1016/j.iibydana.2021.02.080. 	10. Hong, X. et. al. Int. J. Hydrogen Energy 2021, 46, 32914–32928, doi:10.1016/j.ijhydene.2021.07.138.			
 4. Elberry, A.M. et. al. Int. J. Hydrogen Energy 2021, 46, 15671–15690, doi:10.1016/j.ijhydene.2021.02.080. 5. Wijsyanta A.T. et. al. Int. J. Hydrogen Energy 2010, 44, 15026, 15044, doi:10.1016/j.ijhydene.2010.04, 112 	11. Niermann, M. et. al. Int. J. Hydrogen Energy 2019, 44.			
 5. Wijayanta, A.T. et. al Int. J. Hydrogen Energy 2019, 44, 15026–15044, doi:10.1016/j.ijhydene.2019.04.112. 6. Lim, K.L. et. al. Chem. Eng. Technol. 2010, 33, 213–226, doi:10.1002/ceat.200900376. 	 Sekine, Y. et. al. Top. Catal. 2021, 64, 470–480, doi:10.1007/s11244-021-01452-x. Cho, J. et. al. Catalysts 2021, 11, 1497, doi:10.3390/catal11121497. 			
 Kumar, A. et. al. Sustain. Energy Technol. Assessments 2022, 52, 102204, doi:10.1016/j.seta.2022.102204. 	14. M.A. Ermakova, D.Y. Ermakov. Appl. Catal. A Gen. 245 (2003) 277–288. https://doi.org/10.1016/S0926-860X(02)00648-8.			