Synthesis of Hexagonal Nanophases in the $La_2O_3 - MO_3$ (M = Mo, W) Systems

Baldin E. D.¹, Lyskov N.V.^{2,3}, Vorobieva G.A.¹, Kolbanev I.V.¹, Karyagina O.K.⁴, Stolbov D.N.⁵, Voronkova V.I.⁶, Shlyakhtina A.V.¹

1 - N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia 2 - Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Moscow region, Chernogolovka, Russia 3 - National Research University "Higher School of Economics", Moscow, Russia 4 - Emanuel Institute of Biochemical Physics RAS, Moscow, Russian Academy of Sciences, Russia 5 - Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia 6 - Department of Physics, Lomonosov Moscow State University, Moscow, Russia

ABSTRACT

We report a study of nanophases in the La_2O_3 -MO₃ (M = Mo, W) systems, which are known to contain a variety of good oxygen-ion and proton conductors. Mechanically activated $La_2O_3 + MO_3$ (M = Mo, W) mixtures have been characterized by DSC and XRD with Rietveld refinement, the microstructure of the materials has been examined by SEM, and their conductivity in dry and wet air has been determined using impedance spectroscopy. In both systems, the formation of hexagonal $La_{15}M_{8.5}O_{48}$ (phase II, 5H polytype) (M = Mo, W) nanophases is observed for composition 1:1, with exothermic peaks in the DSC curve in the range ~480–520 $^{\circ}$ C for La₁₅Mo_{8.5}O₄₈ and ~ 685–760 $^{\circ}$ C for La₁₅W_{8.5}O₄₈. The crystallite size of the nanocrystalline tungstates is ~40 nm and that of the nanocrystalline molybdates is ~50 nm. At higher temperatures (~630–690 and ~1000 ° C), we observe irreversible reconstructive phase transitions of hexagonal $La_{15}Mo_{8.5}O_{48}$ to tetragonal γ - La_2MoO_6 and of hexagonal La₁₅W_{8.5}O₄₈ to orthorhombic β -La₂WO₆. We compare temperature dependences of conductivity for nanoparticulate and microcrystalline hexagonal phases and high-temperature phases differing in density. Above 600 $^{\circ}$ C, oxygen ion conduction prevails in the coarsegrained La₁₈W₁₀O₅₇ (phase I, 6H polytype) ceramic. Low-density La₁₅W_{8.5}O₄₈ and La₁₅Mo_{8.5}O₄₈ (phase II, 5H polytype) nanoceramics exhibit predominantly electron conduction with an activation energy of 1.36 and 1.35 eV, respectively, in dry air.

X-Ray Powder Diffraction

Particle size and morphology of starting oxide powders and mechanically activated powders

lowhexagonal nanoceramic (relative density of 60.0%), coarse-grained $La_{18}W_{10}O_{57}$ ceramic (relative density of 92%), (3) loworthorhombic βceramic (relative density of 69.6%), (4) coarseorthorhombic βceramic (relative density of 81.4%) and (5) $La_2W_{1+x}O_{6+3x}$ (x ~ 0.22) single lowhexagonal nanoceramic (relative density of 64.8%) low-density γ -La₂MoO₆ ceramic (relative density of

Fig. 3 XRD patterns of mechanically activated (m/a) La₂O3+WO₃ mixture (1) after heating in DSC cell up to 685 °C, (2) after heating in DSC cell up to 760 °C, (3) after thermal annealing at 600 °C for 96 h. La₂O₃ (ICDD PDF 1523968) - 41.1(6) wt.%.

