Ln/Fe-doped Sr<sub>2</sub>TiO<sub>4</sub> Layered Perovskites: Effect of synthesis method and composition on physical-chemical and catalytic properties in oxidative coupling of methane <u>Pavlova S.N.<sup>1</sup></u>, Gorkusha A.S.<sup>2</sup>, Tsybulya S.V.<sup>1,2</sup>, Nartova A.V.<sup>1</sup>, Rogov V.A.<sup>1</sup>, Isupova L. A.<sup>1</sup>

<sup>1</sup> – Boreskov Institute of Catalysis, Novosibirsk, Russia
 <sup>2</sup> – Novosibirsk State University, Novosibirsk, Russia

| Introduction. Oxidative coupling of methane (OCM) – a potential direct route to produce C <sub>2</sub> hydrocarbons                                                                           | Morphology (Field Emission Scanning Electron Microscope (FE-SEM))                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{rcl} \mathbf{4CH_4} + \mathbf{O_2} &\rightarrow \mathbf{2C_2H_6} + \mathbf{2H_2O} \\ \mathbf{2C_2H_6} + \mathbf{O_2} \rightarrow \mathbf{2C_2H_4} + \mathbf{2H_2} \end{array}$ | La <sub>0.1</sub> Sr <sub>1.9</sub> TiO <sub>4</sub> 5%La/Sr <sub>2</sub> TiO <sub>4</sub><br>(sol-gel) (impregnation) |
| OCM simplified scheme<br>Heterogeneous-homogeneous                                                                                                                                            | $\succ La_{0,1}Sr_{1,9}TiO_4:$                                                                                         |



# reacion

>Activation of  $CH_4$  in  $CH_3^*$  over active oxygen on the catalyst surface

 $> CH_3^*$  coupling in the gas phase  $\rightarrow C_2H_6$ 

 $>C_2H_6$  oxidative dehydrogenation to ethylene on the catalyst surface centers

Nonselective oxidation of  $CH_4$  in  $CO_x$  decreases the yield of  $C_2$ -hydrocarbons  $\rightarrow$  the desing of new active and selective catalysts is the actual problem

Introduction. Layered strontium titanates – perspective catalysts for OCM



Sr<sub>2</sub>TiO<sub>4</sub> structure:

consists of SrTiO<sub>3</sub> and SrO alternating layers

 $_{a}$  > highly thermal and chemical stable

- $\succ$  flexible structure  $\rightarrow$  substitution of Sr or/and Ti positions
  - $\rightarrow$  tuning concentration of surface defects, active oxygen species  $\rightarrow$  tailoring the OCM catalyst activity

The aim: To study the impact of the cations nature partially replacing Sr (La, Nd, Pr) or Ti (Fe) and the method of their introduction in



#### *La*<sub>2</sub>*O*<sub>3</sub> particles upto 200 nm

## >5%La/Sr₂TiO₄: La₂O₃ particles upto 300 nm and agglomerates upto 1µ

# Sol-gel method provide high Ln oxide dispersion





### H<sub>2</sub>-Temperature Programmed Reduction





 > Three temperature region of oxygen forms reduction: 300-500°C –weakly bound oxygen; 500-650°C and 650-850°C – surface and bulk oxygen
 > La(Nd)SrTi → mainly surface lattice oxygen and bulk oxygen
 > PrSrTi and SrTiFe→ large amount of weakly bound oxygen reduced at 300-500°C

**Catalysts activity in Oxidative Coupling of Methane** 

**Testing:** 45% CH<sub>4</sub> in air(CH<sub>4</sub>:  $O_2 \sim 4$ ); GHSV - 75000 h<sup>-1</sup>; 850-900°C 30 35 40 45 50 55 60 65 70 <u>Ln-Sr, TiO</u>  $Sr_2 II_{1-y} Fe_y O_4$ 25 2Theta  $\succ$ La and Nd > Fe doping >multiphase, Ln nature influences Sr<sub>2</sub>Fe<sub>0.3</sub>Ti<sub>0.7</sub>O<sub>4</sub> doped sol-gel Pr/Sr<sub>2</sub>TiO<sub>4</sub>(impregnation) leads to lowering phase composition samples are the r<sub>0.1</sub>Sr<sub>1.9</sub>TiO4(sol-gel) the activity due Sr2Fe<sub>0.2</sub>Ti<sub>0.8</sub>O4 Nd/Sr<sub>2</sub>TiO<sub>4</sub>(impregnation) most active due > La, Nd: formation intermediate to large amount Nd<sub>0.1</sub>Sr<sub>1.9</sub>TiO<sub>4</sub> (sol-gel) to the presence Sr<sub>2</sub>Fe<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>4</sub> appearance of  $Ln_xSr_{1-x}TiO_3$ La/Sr<sub>2</sub>TiO<sub>4</sub>(impregnation) of surface lattice weakly bound .a<sub>0.1</sub>Sr<sub>1.9</sub>TiO<sub>4</sub> (sol-gel) ➢ Pr <sup>3+</sup>: formed only layered Sr<sub>2</sub>TiO<sub>4</sub> oxygen promotes oxygen favoring Sr<sub>2</sub>TiO<sub>4</sub> (sol-gel)  $Sr_{x+1}Ti_{x}O_{3x+1}$ 2 4 6 8 10 12 14  $\mathbf{C}_{2}$  forming and 2 4 6 8 10 12 14 C2 Yield ( ethane+ethylene) % CO<sub>x</sub> formation Yield C2 (ethane+ethylene) high oxides > Ln<sup>3+</sup> partially incoporate in dispersion perovskite high dispersion of Ln oxides Conlusion

> all samples contain *Ln* oxides

50

60

Ln are not embedded in
Sr<sub>2</sub>TiO<sub>4</sub>

20

10

 $\frac{Sr_2Ti_{1-y}Fe_yO_4(y=0-0.3)}{(sol-gel)}$ 

- all samples are single phase layered perovskites
- changed lattice parameters evidence Fe incorporation into strontium titanate structure
- Higher yield of C2 over La and Nd-doped sol-gel samples links with high oxides dispersion and the presence of oxygen forms having optimal bound energy.
- Decreasing yield of C2 in the case of Fe and Pr-doped samples is due to weakly bound oxygen forms facilitating CO<sub>x</sub> formation.