IMPROVEMENT OF ARC CONSISTENCY IN ASYNCHRONOUS FORWARD BOUNDING ALGORITHM

Rachid Adrdor!, Lahcen Koutti'

rachid.adrdor@edu.uiz.ac.ma |.koutti@uiz.ac.ma

UIbn Zohr University, Faculty of Sciences, Department of Computer Science, Agadir, Morocco

AJCAI 2021 : The 34th Australasian Joint Conference on Artificial Intelligence, 2-4 February 2022, Sydney

Abstract

The AFB_BJ™-AC* algorithm is one of the latest algorithms
used to solve Distributed Constraint Optimization Prob-
lems (DCOPs). It is based on simple arc consistency (AC*)
to speed up the process of solving a problem by perma-
nently removing any value that doesn’t belong to its opti-
mal solution. In this paper, we use a directional arc consis-
tency (DAC*), the next higher level of AC*, to erase more
values and thus to quickly reach the optimal solution of a
problem. Experiments on some benchmarks show that the
new algorithm, AFB_BJ"-DAC", is better in terms of com-
munication load and computation effort.

| Introduction

In a DCOP, variables, domains, and constraints are dis-
tributed among a set of agents. Each agent has full con-
trol over a subset of variables and constraints. ADCOP is
solved in a distributed manner via an algorithm allowing
the agents to cooperate with each other to find a solu-
tion with a minimal cost. A solutionto a DCOP is a set of
value assignments, each representing the value assigned
to one of the variables in that DCOP. AFB_BJ™-AC*[1] is
one of the recent algorithms which uses soft arc consis-
tency (AC*) to solve DCOPs. In this work, instead of us-
ing AC* with AFB_BJ™, we use Directional AC* (DAC¥).
This helps to largely narrow down agents’ domains of a
given DCOP and thus quickly reach its optimal solution.
This change produces a new algorithm called AFB_BJ™-
DAC*. Our experiments on different benchmarks show
the superiority of AFB_BJ™-DAC™* algorithm in terms of
communication load and computation effort.

I Background

1 DCOP

A DCOP [2] is defined by 4 sets:
e A={Ay A, ..., A} : Agents;
e X = {x,29,...,x,} : Variables;
D ={D,Ds,...,D,} : Domains;
*x D; : the possible values of x;
C ={c; : DixD;j - R'}yU{¢; : D; = R}
Constraints
Objective:

find a solution S with > ¢; +¢;;,C;,Cy; € S'is
minimized
For simplicity purposes, we consider a restricted version
of DCOP where two variables, at most, are linked by

one constraint (i.e., unary or binary constraint) and each
agent is responsible for a single variable (k = n).

2 Directional Arc Consistency (DACY)

DAC* is a set of rules that are applied to a problem to
remove values that are not part of its optimal solution.
A problem is DAC™ if each variable z; of this problem is
DAC™ with its neighbors x, such that j > ¢. A variable z;
is DAC* with respect to its neighbor x ;, such that j > 1, if
each value v; € D; satisfies C,+ ¢;(v;) < UB;, and there
is a value v; € D; which satisfies ¢;;(v;, v,) + ¢;(v;) = 0.
v; is called a full support of v;.

* ¢;i(vi, v;) is the binary cost of (v;, v;).

* ¢j(v;) is the unary cost of v;.

x Cy is the global lower bound.

*x U B; is the global upper bound.

References

AFB_BJ"-DAC* algorithm

AFB_BJ"-DAC* algorithm works according to five main
steps:

1. Initialization : a static order is applied to agents of the
problem. Each agent initializes its data structures and the
first agent starts enforcing DAC™.

2. Enforcing DAC™ : the current agent x; updates its bi-
nary constraints shared with its higher neighbors using
the received extension values. Then, it performs, for each
higher neighbor z;, two projections: the first one to up-
date its unary costs, and the second one to update the
value of C. After all, it filters its domain D, by removing
any value v; that satisfies cj(v;) + C, > UB,. Finally,
it performs a cost extension to its lower neighbors ;. by
shifting its unary costs to binary costs. Then, it performs a
binary projection on its lower neighbors to keep the sym-
metry of the binary constraints shared between them.

3. Assigning variables : the current agent x; chooses,
for z;, a value from its previously filtered domain D, to
extend the CPA Y7 by its value assignment (z;,v;). If x;
has successfully extended the CPA, it sends an ok? mes-
sage to the next agent asking it to continue the exten-
sion of CPA Y/. This message loads the extended CPA
Y7, its guaranteed costs, the C, the list of extension val-
ues, and the list of deleted values. At the same time, it
sends fb? messages to unassigned agents asking them to
evaluate the included CPA and send their estimates on it.
Y =Y7 = [(x1,v1),...,(x;,v;)] is a current partial as-
signment (CPA).

OK?: (CPA,C 5, Dvals)

T

FB?: (CPA)

4. Evaluating the CPA : When receiving an fb? mes-
sage, each receiving agent computes the lower bounds
corresponding to the received CPA Y7, then it sends them
to the requesting agent x; via an Ib message. The lower
bounds represent the cost estimates, on the CPA Y7, of
each agent not yet assigned with respect to its lower
neighbors. When receiving an |b message, x; computes
the global lower bound for the evaluated CPA Y’ and
checks if it exceeds U B;.

LB: (Ib,[h](CPA)); h : niveau dans CPA

5. Backjumping : If the global lower bound of CPA ex-
ceeds U B, x; changes the value assigned to its variable
oy a more appropriate one if it exists. If it does not exist, it
pbackjumps to the previous agents exactly the guilty agent
oy sending it a back message. If the guilty agent does not
exist or the domain of x; becomes empty, z; stops its ex-
ecution and informs the others via stp messages.

Back: (CPA,C,,Dvals)

AFB_BJ™-DAC* continues in this manner by repeating
these steps until a solution with minimal cost is found.

[1] Rachid Adrdor and Lahcen Koutti. Enhancing AFB_BJ"AC* algorithm. In 2019 International Conference of Computer Science and Renewable Energies (ICCSRE), pages 1-7. IEEE, July 2019.

[2] Mohamed Wahbi, Redouane Ezzahir, and Christian Bessiere. Asynchronous forward bounding revisited. In International Conference on Principles and Practice of Constraint Programming, pages 708—723. Springer, 2013.

Experimental Results

We experimentally compare AFB_BJT-DAC* with its
older versions [2, 1] and with the BnB-Adopt™-DP2 al-
gorithm [2], which is its famous competitor.

To compare the algorithms, we use two metrics, the
total of messages exchanged (msgs) for the communi-
cation load and the total of non-concurrent constraint
checks (ncccs) for the computation effort.

An example of benchmarks used in these experiments
is meetings scheduling. These are problems in which a
number of participants seek to meet, either in pairs or
in groups, at a given place and date. The objective is
therefore to know how to plan these meetings so that
all the participants are satisfied. We have evaluated 4
cases A, B, C, and D, which are different in terms of
meetings/participants.

I
— 4 AFB BJ*

1,000 F -
% _e— AFB_BJ-AC*
o0 AFB_BJ*-DAC*
o s00 | — o BnB-Adopt™-DP2 ||
O
S 600 | -
S -
o
_og 400 + -
E —@
S5 200 | :
O | | | |
A B C D
case
— 4+ AFB BJ*
6,000 _e_AFB BJ*-AC* |
% AFB_BJ*-DAC*
O —o— BnB-Adopt™-DP2
&
« 4,000 ¢ -
o
3,
e
g 27000 7 ‘\‘\- 7
-
O | | | |
A B C D
case

Figure 1: Total of msgs sent and ncccs for meetings scheduling

The results obtained (Fig. 1) show a clear improvement
of the AFB_BJ"™-DAC* compared to others, whether for
msgs or for nccces.

By analyzing these results, we can conclude that the
AFB_BJ*-DAC* is better than its earlier versions be-
cause of the existence of DAC* which allows agents to
remove more suboptimal values.

Conclusion

In this paper, we have introduced the AFB_BJ"-DAC*
algorithm. It relies on DAC* to generate more dele-
tions and thus quickly reach the optimal solution of a
problem. DAC* mainly relies on performing a set of
cost extensions in one direction from an agent to its
lower priority neighbors in order to perform AC* multi-
ple times. Experiments on some benchmarks show that
the AFB_BJ"-DAC* behaves better than its older ver-
sions. As future work, we propose to exploit the change
in the size of the agent domains in variable ordering
heuristics.

