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Abstract

The AFB_BJ™-AC* algorithm is one of the latest algorithms
used to solve Distributed Constraint Optimization Prob-
lems (DCOPs). It is based on simple arc consistency (AC*)
to speed up the process of solving a problem by perma-
nently removing any value that doesn’t belong to its opti-
mal solution. In this paper, we use a directional arc consis-
tency (DAC*), the next higher level of AC*, to erase more
values and thus to quickly reach the optimal solution of a
problem. Experiments on some benchmarks show that the
new algorithm, AFB_BJ"-DAC", is better in terms of com-
munication load and computation effort.

| Introduction

In a DCOP, variables, domains, and constraints are dis-
tributed among a set of agents. Each agent has full con-
trol over a subset of variables and constraints. ADCOP is
solved in a distributed manner via an algorithm allowing
the agents to cooperate with each other to find a solu-
tion with a minimal cost. A solutionto a DCOP is a set of
value assignments, each representing the value assigned
to one of the variables in that DCOP. AFB_BJ™-AC*[1] is
one of the recent algorithms which uses soft arc consis-
tency (AC*) to solve DCOPs. In this work, instead of us-
ing AC* with AFB_BJ™, we use Directional AC* (DAC¥).
This helps to largely narrow down agents’ domains of a
given DCOP and thus quickly reach its optimal solution.
This change produces a new algorithm called AFB_BJ™-
DAC*. Our experiments on different benchmarks show
the superiority of AFB_BJ™-DAC™* algorithm in terms of
communication load and computation effort.

I Background

1 DCOP

A DCOP [2] is defined by 4 sets:
e A={Ay A, ..., A} : Agents;
e X = {x,29,...,x,} : Variables;
D ={D,Ds,...,D,} : Domains;
*x D; : the possible values of x;
C ={c; : DixD;j - R'}yU{¢; : D; = R}
Constraints
Objective:

find a solution S with > ¢; +¢;;,C;,Cy; € S'is
minimized
For simplicity purposes, we consider a restricted version
of DCOP where two variables, at most, are linked by

one constraint (i.e., unary or binary constraint) and each
agent is responsible for a single variable (k = n).

2 Directional Arc Consistency (DACY)

DAC* is a set of rules that are applied to a problem to
remove values that are not part of its optimal solution.
A problem is DAC™ if each variable z; of this problem is
DAC™ with its neighbors x, such that j > ¢. A variable z;
is DAC* with respect to its neighbor x ;, such that j > 1, if
each value v; € D; satisfies C,+ ¢;(v;) < UB;, and there
is a value v; € D; which satisfies ¢;;(v;, v,) + ¢;(v;) = 0.
v; is called a full support of v;.

* ¢;i(vi, v;) is the binary cost of (v;, v;).

* ¢j(v;) is the unary cost of v;.

x Cy is the global lower bound.

*x U B; is the global upper bound.
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AFB_BJ"-DAC* algorithm

AFB_BJ"-DAC* algorithm works according to five main
steps:

1. Initialization : a static order is applied to agents of the
problem. Each agent initializes its data structures and the
first agent starts enforcing DAC™.

2. Enforcing DAC™ : the current agent x; updates its bi-
nary constraints shared with its higher neighbors using
the received extension values. Then, it performs, for each
higher neighbor z;, two projections: the first one to up-
date its unary costs, and the second one to update the
value of C. After all, it filters its domain D, by removing
any value v; that satisfies cj(v;) + C, > UB,. Finally,
it performs a cost extension to its lower neighbors ;. by
shifting its unary costs to binary costs. Then, it performs a
binary projection on its lower neighbors to keep the sym-
metry of the binary constraints shared between them.

3. Assigning variables : the current agent x; chooses,
for z;, a value from its previously filtered domain D, to
extend the CPA Y7 by its value assignment (z;,v;). If x;
has successfully extended the CPA, it sends an ok? mes-
sage to the next agent asking it to continue the exten-
sion of CPA Y/. This message loads the extended CPA
Y7, its guaranteed costs, the C, the list of extension val-
ues, and the list of deleted values. At the same time, it
sends fb? messages to unassigned agents asking them to
evaluate the included CPA and send their estimates on it.
Y =Y7 = [(x1,v1),...,(x;,v;)] is a current partial as-
signment (CPA).

OK?: (CPA,C 5, Dvals)

T

FB?: (CPA)

4. Evaluating the CPA : When receiving an fb? mes-
sage, each receiving agent computes the lower bounds
corresponding to the received CPA Y7, then it sends them
to the requesting agent x; via an Ib message. The lower
bounds represent the cost estimates, on the CPA Y7, of
each agent not yet assigned with respect to its lower
neighbors. When receiving an |b message, x; computes
the global lower bound for the evaluated CPA Y’ and
checks if it exceeds U B;.

LB: (Ib,[h](CPA)); h : niveau dans CPA

5. Backjumping : If the global lower bound of CPA ex-
ceeds U B, x; changes the value assigned to its variable
oy a more appropriate one if it exists. If it does not exist, it
pbackjumps to the previous agents exactly the guilty agent
oy sending it a back message. If the guilty agent does not
exist or the domain of x; becomes empty, z; stops its ex-
ecution and informs the others via stp messages.

Back: (CPA,C,,Dvals)

AFB_BJ™-DAC* continues in this manner by repeating
these steps until a solution with minimal cost is found.
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Experimental Results

We experimentally compare AFB_BJT-DAC* with its
older versions [2, 1] and with the BnB-Adopt™-DP2 al-
gorithm [2], which is its famous competitor.

To compare the algorithms, we use two metrics, the
total of messages exchanged (msgs) for the communi-
cation load and the total of non-concurrent constraint
checks (ncccs) for the computation effort.

An example of benchmarks used in these experiments
is meetings scheduling. These are problems in which a
number of participants seek to meet, either in pairs or
in groups, at a given place and date. The objective is
therefore to know how to plan these meetings so that
all the participants are satisfied. We have evaluated 4
cases A, B, C, and D, which are different in terms of
meetings/participants.
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Figure 1: Total of msgs sent and ncccs for meetings scheduling

The results obtained (Fig. 1) show a clear improvement
of the AFB_BJ"™-DAC* compared to others, whether for
msgs or for nccces.

By analyzing these results, we can conclude that the
AFB_BJ*-DAC* is better than its earlier versions be-
cause of the existence of DAC* which allows agents to
remove more suboptimal values.

Conclusion

In this paper, we have introduced the AFB_BJ"-DAC*
algorithm. It relies on DAC* to generate more dele-
tions and thus quickly reach the optimal solution of a
problem. DAC* mainly relies on performing a set of
cost extensions in one direction from an agent to its
lower priority neighbors in order to perform AC* multi-
ple times. Experiments on some benchmarks show that
the AFB_BJ"-DAC* behaves better than its older ver-
sions. As future work, we propose to exploit the change
in the size of the agent domains in variable ordering
heuristics.



