Holocene mountain glacier variability in the Sukkertoppen region, western Greenland (PP13A-2052)
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In order to model the exposure history, constraints on periods of ice cover (or lack thereof) are

3 (14GROR-02) ' incorporated from moss and lake core 14C dates, and other regional climate proxies.
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14C ages of rooted mosses precisely define the timing of past ice cap expansion
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9 and net snowline depression across the field area.
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followed by episodic snowline lowering after ~2.0
cal kyr BP.
The majority (86%) of *C ages occur within the past
2 kyr, clustering between ~1.9-1.5, ~1.3-1.0 and
~0.7-0.2 cal kyr BP, suggesting an intensification of
summer cooling and snowline lowering at this time. RZ2 = 0.2949
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1600 + T —>» Differences in the measured [14C] versus the modeled [14C] may be due to the effects of thin ice
shielding (Miller et al., 2006; Anderson et al., 2008) and/or production pathways.
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A lack of 4C ages occurs between ~4.0-2.0 cal kyr = 10Be-dated erratics constrain local deglaciation to 10.1+x0.4 ka (n=9).
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A prominent peak in Crash Lake downcore data at ~9 ka punctuates the early Holocene and may reflect
glacier advance correlative with nearby ice sheet moraines (Lesnek et al., in prep).
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Crash Lake PC1 scores suggest that local ice expanded at ~1.8 cal yr BP, which is synchronous with
increased mineral-rich input in Gnat Lake at ~1.8 cal yr BP, and with '#C ages in the moss chronology.
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retreat i~ cases In situ "*C ages indicate that moss '*C ages only represent the most recent period of ice cover at a
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