Abstract

The ATP-sensitive K+ (KATP) channel is a class of inward rectifier K+ channels that contributes to systemic basal vasomotor tone. In rats blockade of KATP channels via glibenclamide (GLI) promotes vasoconstriction thereby increasing mean arterial pressure (MAP) and decreasing renal and hindlimb skeletal muscle blood flow. We tested the hypothesis that the GLI-induced increase in vascular tone resulted, in part, from increased renal or lumbar sympathetic nerve discharge (SND). Heart rate (HR), MAP and lumbar and renal SND (direct nerve recordings) were measured in 8 male Sprague Dawley rats for 10 min following vehicle (VEH) and GLI (2.5 mg/kg i.v.). GLI increased MAP from min 2-10 compared to both baseline and VEH (peak Δ MAP at min 10: 18 ± 4 mmHg, p < 0.05) but HR was unchanged at any time point (p > 0.05). Lumbar SND was decreased from min 2-10 (peak Δ SND at min 3: -33.7 ± 5.7 %) and renal SND was decreased from min 2-9 (peak Δ SND at min 3: -36.3 ± 3.2 %) with GLI compared to VEH (p < 0.05). These data support that GLI-induced reductions in skeletal muscle and renal blood flow reflect peripheral KATP channel vascular control and decreased SND actually acts to constrain the full magnitude of the hyperemic response. Consequently, the hindlimb skeletal muscle blood flow reductions with KATP channel blockade may be underestimated in baroreflex-intact animals. Grants: HL-108328, AG-041948

Background

Inward rectifier K⁺ channels are capable of hyperpolarizing the cell membrane. One particular channel, the ATP-gated K^+ (K_{ATP}) channel, is activated, in part, by reductions in the ratio of ATP-to-ADP and may therefore contribute to the integration of cellular metabolism with vasomotor tone.

- That exercising vascular control can be impacted by K_{ATP} channel inhibition (Bijlstra 1996) generates hypotheses concerning the site of K_{ATP} channelmediated regulation; neural, humoral, myogenic, etc.
- The K_{ATP} channel functions in numerous tissues and inhibition of neuronal K_{ATP} channels may potentiate global sympathetic nerve discharge (SND) and account for the decrements in skeletal muscle blood flow.

Sympathetic Neural Contributions to Vascular Control: Role of K_{ATP} Channels

Clark T Holdsworth, Scott K Ferguson, Richard J Fels, Shawnee R Montgomery, Michael J Kenney, David C Poole and Timothy I Musch Departments of Kinesiology, Anatomy & Physiology - Kansas State University

The direct measurement of SND can elucidate K_{ATP} channel function in neural circulatory control. In particular, the lumbar SND which reflects the sympathetic-induced vasoconstrictor signal to the skeletal muscle vasculature.

Hypothesis

GLI-induced K_{ATP} channel inhibition would increase renal and lumbar SND.

Methods

8 Young adult male Sprague-Dawley rats Pharmacological blockade of K_{ATP} channels via the sulfonlyurea derivative glibenclamide (2.5 mg/kg i.a.)

Measurements

Mean arterial pressure (MAP) and heart rate (HR) determined via carotid artery catheter.

Left renal and lumbar nerves surgically isolated and SND measured as burst recordings with a platinum bipolar electrode.

Surgical preparation under anesthesia with electrodes attached to cut or crushed nerve endings:

MAP, HR, and lumbar and renal SND were measured and recorded for an \sim 10–15 min period where baseline values were determined from the average of the final \sim 60 s.

Recordings were made for 10 min following intra-arterial infusion of a saline vehicle and repeated for the infusion of GLI 2.5 mg/kg.

Figure 3: Renal and lumbar SND were reduced relative to the vehicle with GLI.

Conclusions

- These data support that GLI-induced reductions in skeletal muscle and renal blood flow reflect peripheral K_{ATP} channel vascular control. Decreased SND actually acts to constrain the magnitude of this effect.
- Consequently, the hindlimb skeletal muscle blood flow reductions with K_{ATP} channel inhibition may be underestimated in baroreflex-intact animals.

References

Bijlstra, P.J., Lutterman, J.A., Russel, F.G., Thien, T., Smits, P. (1996). Interaction of sulphonylurea derivatives with vascular ATP-sensitive potassium channels in humans. *Diabetologia*. 39(9), 1083-1090. Flagg, T.P., Enkvetchakul, D., Koster, J.C., Nichols, C.G. (2010). Muscle KATP channels: Recent insights to energy sensing and myoprotection. *Physiol. Rev.* 90(3), 799-829.