4.7 Article

A near-optimal solution method for coordinated operation planning problem of power- and heat-interchange networks using column generation-based decomposition

Journal

ENERGY
Volume 197, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.117118

Keywords

Optimization; Coordinated operation planning; Energy network; Dantzig-Wolfe decomposition; Column generation; Mixed-integer linear programming

Ask authors/readers for more resources

A near-optimal solution method for coordinated operation-planning problems of power- and heat-interchange networks using column generation-based decomposition was developed to enhance computational efficiency and scalability. The coordinated operation-planning problem, based on a mixed-integer linear programming (MILP) approach, was decomposed into a master problem concerning power and heat interchanges and subproblems for energy-supply systems on the basis of the Dantzig-Wolfe reformulation. To determine a near-optimal solution, heuristic finalization was developed, in which a final MILP problem is solved after fixing part of binary variables based on the lower bound result obtained through two-stage iterative column generation. The developed method was then applied to the coordinated operation planning of power- and heat-interchange networks consisting of 5-100 cogeneration systems using a 150-kWe gas engine and a 45-kWe polymer electrolyte fuel cell on a winter representative day. In the case of using 100 cogeneration systems, 93% of the binary variables expressing the on/off status of the cogeneration units and heat-interchange pumps were fixed in the heuristic finalization. The near-optimal solution, which has a lower daily energy cost than in the conventional solution method, can be obtained without optimization termination due to limits of computation time and memory usage. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available