4.5 Article

Experimental design optimization for electrochemical removal of gentamicin: toxicity evaluation and degradation pathway

Journal

WATER SCIENCE AND TECHNOLOGY
Volume 67, Issue 9, Pages 2017-2024

Publisher

IWA PUBLISHING
DOI: 10.2166/wst.2013.076

Keywords

antibiotic wastewater; design of experiments (DOE); mass spectral studies; multiple regression; pharmaceutical wastewater; response surface methodology (RSM)

Ask authors/readers for more resources

Electrochemical degradation of gentamicin was achieved using a laboratory scale electrochemical reactor by optimizing pH, current density and treatment time. A two step statistical optimization was performed as per factorial design and center composite design (CCD). A Pareto chart was used for selecting statistically significant effects and an analysis of variance (ANOVA) table indicated significant curvature. Thus adding additional experimental runs improved the model fitting through a second order model. Maximum degradation was predicted at a pH of 6.7, 70 A m(-2) and 45 min. The experimental data fitted well through a reduced quadratic model with R-2 equal to 0.945. The toxicity of degradation products as determined by disc diffusion as say employing Pseudomonas aeruginosa strain was found to be reduced by 55%. The degradation pathway of gentamicin was studied using mass spectral (MS) analysis. Pure gentamicin showed a molecular ion peak at m/z 478 ([M + 1](+)), and after addition of NaCl as electrolyte, the mass peak was observed at m/z 523. After 15 min of electrochemical treatment, a new peak appeared at m/z 316 due to the loss of one pyran moiety. After 45 min of electrochemical treatment, another peak appeared at m/z of 478 due to loss of two Na+ from gentamicin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available