

NELSON MANDELA

Applying Machine Learning Techniques to Forecast Demand in a South African Fast-Moving Consumer Goods Company

Martin Chanza, Louise De Koker, Sasha Boucher, Elias Munapo and Gugulethu Mabuza North-West University and Nelson Mandela University 6th International Conference on Intelligent Computing & Optimization 2023

Introduction

Ever-increasing competitive environment in Fast-moving consumer goods (FMCG). A need for effective inventory planning hence a need for future demand to be forecast. Study aim was to forecast demand in complementary medicine range in the baby category using statistical techniques and machine learning models.

Literature Review

Machine learning (ML) demand forecasting, compared to traditional methods, has revealed supply-demand efficiency. This means applying ML for demand forecasting can potentially promote supply chain efficiency (Dikshit et al. 2022).

Methodology

Results

SARIMA $(2,1,0) \times (2,0,0)_{12}$ given all the diagnostic-checking results is the best fitted model to forecasting Overall demand.

The fitted feed forward ANN model is NNAR(4,1,3)

Model	ME	MAE	RMSE	MAPE
SARIMA	39357	1423226	1819954	17.87627
ANN	678	726782	920343	9.299668

Conclusions

ANN model shows the best performance in demand forecasting in the FMCG sector. We recommend the use of Auto-Regressive Integrated Moving Average ARIMAX model for modelling demand when multivariate data is present.

References

A. Dikshit, B. Pradhan, and M. Santosh, 'Artificial neural networks in drought prediction in the 21st century–A scientometric analysis', *Appl. Soft Comput.*, vol. 114, p. 108080, Jan. 2022, doi: 10.1016/j.asoc.2021.108080