Co-exposure to aluminium and cadmium mediates postpartum maternal variation in brain architecture and behaviour

Background	Methods
• Impaired neurodevelopment in children has become a growing public health concern.	MODEL ANIMAL; Pregnant Mice
• However, the association between cross-metal exposures of pregnant mothers and postpartum neuroendocrine functions have remained largely unexplored.	Treatment : Control (CTR): Saline (10 ml/kg), (1.5 mg/kg) , AlCl ₂ (10mg/kg)+ CdCl ₂ (1.5mg/kg).
 Aluminium and cadmium are two metals that are most ubiquitous in the environment with a high potency of their co-exposure. Both metals are known to jointly exist in most exposure endpoints and 	BEHAVIORAL ANALYSIS, OFT, Y-MAZE, SIT N= 5
are also involved in several neurodevelopmental and neurodegenerative pathologies.	ENDOCRINE INDICES (Elisa): Estrogen, Follicle St Luteinizing Hormone (LH) Target; Serum: N= 5
• While scant studies have investigated the effects of their co-exposure on the liver, their effects on postpartum maternal adjustments remains unexplored.	ANTIOXIDANTS AND STRESS MARKERS (Spectro NO, MDA, Ach) Target Area: Whole Brain; Group: N= 5
• This study was carried out to investigate the effect of Aluminium $(AlCl_3)$ and Cadmium $(CdCl_2)$ co-exposure on postpartum maternal behaviour, oxidative stress, endocrine indices and brain architecture.	HISTOPATHOLOGY (NISSL) Target Areas: Prefrontal Cortex. Striatum, Hippocampus, H
Doculte	

Postpartum Behavioral Changes

Postpartum Weight and Brain/Body Weight Ratio

Postpartum Reproductive Hormonal Indices

Oxidative Stress, Cholinergic Stress and Nitrergic Stress Indices

AICI₃ CdCl₂AICI₃+CdCl₂ CTR

Patrick C. Ichipi-Ifukor, Samuel O. Asagba, Fidelis Ifeakachuku Achuba Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria

Contact information: Patrick C. Ichipi-Ifukor Pcichipi-ifukor@delsu.edu.ng