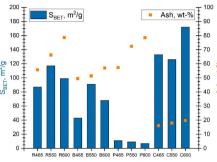
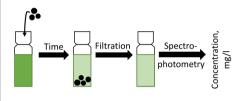


8th Asian Symposium on Advanced Materials, Novosibirsk Expertimental Study of Organic and Inorganic **Compound Adsorption on Biochar Samples**

Borodaevskiy M.M.^{1,2}, Dubinin Y.V.¹, Yeletsky P.M.¹, Yakovlev V.A.¹ 3rd year undergraduate student


¹Boreskov Institute of Catalysis SB RAS ²Natural Sciences Faculty of Novosibirsk State University E-mail: maxim.borodaevskiy@gmail.com

Biochar – product of partial oxidation of biomass in a controlled environment (fluidized bed catalyst reactor). Promising material for adsorption purposes due to rich microstructure of its surface.


Materials

- Twelve samples of sorbents were studied.
- These samples varied in source (rice husk, wheat bran, peat and coal) and treatment temperature in the fluidized bed catalyst reactor (465, 550, 600 °C).
- As model pollutants two compounds were used: Cu²⁺ ions (solution of copper sulfate) methyl green). No joint-pollutant experiments were conducted.
- Material surface area and ash contents were measured during an earlier study.

R – rice husk biochar; B – wheat bran biochar; P - peat; C - coal

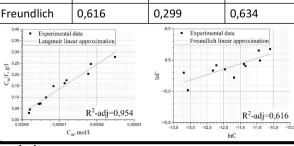
Methods

- all Adsorption capacity experiment: sorbents were tested, no stirring, reaction time - 7 days;
- Thermodynamic experiment: 3 sorbents were tested (R465,550,600), no stirring, reaction time - 7 days, different initial pollutant concentration;
- Kinetic experiments: 1 sorbent was tested For were (R465). solutions stirred. activation energy experiments kinetic curves were built for different reaction temperatures:
- Filtration was carried on paper filters under normal pressure;
- Optical density of solutions were measured at λ =632 nm (MG), 805 nm (Cu²⁺)

Adsorption capacity experiments

- Wheat bran biochar good capacity for MG and Cu2+ alike;
- Rice husk biochar good MG adsorption capacity;
- No clear dependence carbonization temperature can noticed.

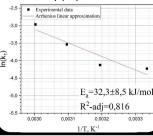
$$\Gamma = \frac{\left(C_{in} - C_{fin}\right) * V}{m_S}$$


$$\frac{40}{35}$$
Rice husk biochar
$$\frac{40}{35}$$
Wheat bran biochar
$$\frac{40}{35}$$
Peat
$$\frac{40}{35}$$
Reas Reso Reso Bales Basso Bedo Palas Passo Peoo Cales Casso Caso
Biochars: R - rice husk; B - wheat bran;

P - peat; C - coal

Thermodynamic experiment

- Adsorption isotherms were built to determine the adsorption model (Langmuir or Freundlich);
- Langmuir model showed best accordance with experimental data for all three samples;


•		• •	
R ² -adj	R465	R550	R600
Langmuir	0,954	0,959	0,970
Freundlich	0,616	0,299	0,634
Experimental data Langmuir linear approximation O30		Experimental data Freundlich linear approximation	

Kinetic experiment:

Activation energy

- Reaction constants determined from kinetic using curves Lagergren kinetic model;
- The calculated data may indicate that the reaction is mostly physical in nature

Conclusion

- Biochars can be used as effective adsorbents, best utilized at lower concentrations of certain pollutants; Wheat bran biochar had the highest adsorption capacity for the inorganic model pollutant, while the
- best results regarding the organic substance belonged to samples of rice husk biochar; The Langmuir adsorption isotherm best describes the data, which hints to the process characteristics;
- The kinetic model is described well by the Lagergren model, and the effective activation energy is 32,3 kJ/mol, which may indicate the mostly physical nature of the process.