

Influence of preparation conditions on activity of bulk Co₃O₄ - based catalysts in the N₂O decomposition

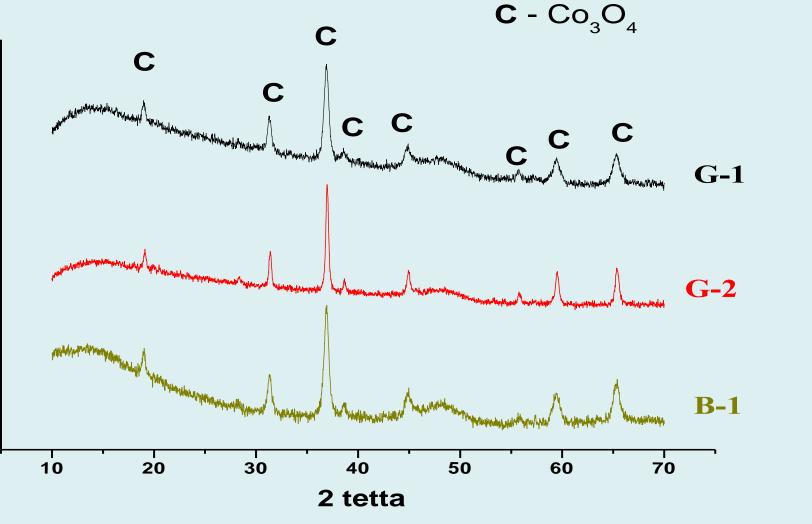
Ivanova Yu.A., Isupova L.A. Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia

Introduction

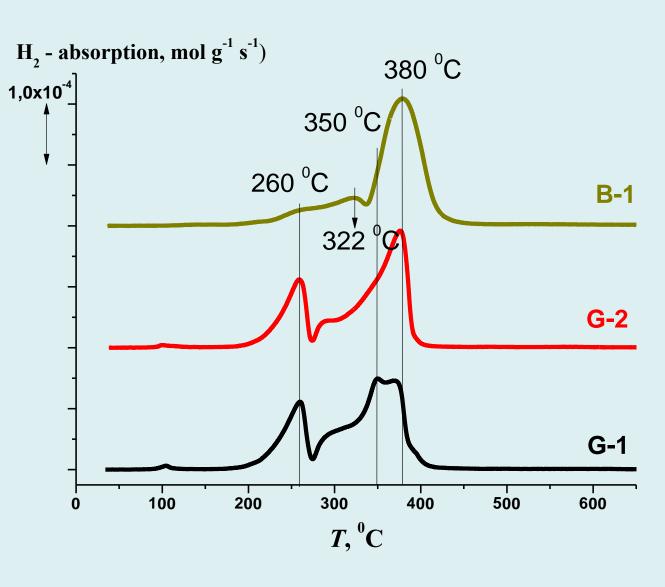
Nitrous oxide is a strong greenhouse gas. Nitrous oxide is a contributor to the destruction of ozone in the stratosphere and a strong greenhouse gas. A reduction of N_2O emission from industrial sources is indispensable. To date, there are two EnviNOx® technologies for the combined removal of N_2O and NO_x from tail gases a zeolite catalyst, both technologies require additional energy consumption for tail gas heating up to 300–600°C. A single-reactor scheme for the abatement of NO_x and N₂O under the conditions of a SCR reactor in Russia at 220-280°C can be economically advantageous. For such a scheme, it is preferable to use a low-temperature N₂O decomposition catalyst with the geometry of a honeycomb block or cylindrical granules. The second layer of the N₂O decomposition catalyst must have mechanical strength, uniformity and must not create hydraulic resistance.

Experimental

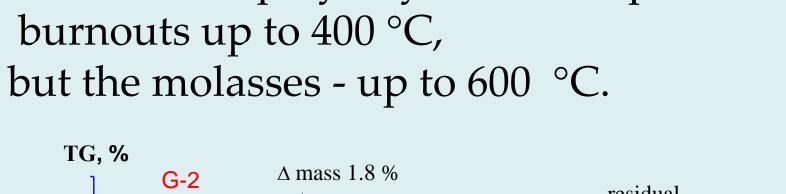
The 2%Cs/Co₃O₄ catalysts were prepared from excellent pastes by extrusion molding through feliers of different geometries. The dried catalysts were calcined in air at 400°C for 2 h. The catalysts were characterized by XRD, TGA, BET, H₂ -TPR.


The Co ₃ O ₄ (S _{bet} ~ 100м ² /г) was obtained by decomposition of 2Co(OH) ₂ ×CoCO ₃ ×H ₂ O in a muffle in air at 300 °C for 4 hours	Paste preparation (by mixing at least 20-60 minutes)	Molding (by forcing pastes through a die)

Tail gas treatment technology for UKL-7 units based on the SCR reactor.


The aim of the work was to obtain a massive granular catalyst, including a honeycomb structure (composition - 2 wt.% Cs/Co₃O₄), for use in the SCR reactor as a second-stage deN₂O catalyst

XRD data reveals: the composition of the pastes does not affect the phase parameters of the samples (a =8.084 Å, CSR: 150-160 Å), but affects the porous structure, specific surface area and strength.


TG data: the polyethylene oxide plasticizer

H₂-TPR results: two peaks observed for bulk catalysts are due to subsequent reduction of $Co^{3+} \rightarrow Co^{2+} \rightarrow Co^{0}$

The N₂O decomposition was carried out at 150–450 °C, at atmospheric pressure and space velocity about 9000 h⁻¹, under real conditions (1500 ppm N₂O, 3.6% O₂, 3% H₂O in He).

Options	G-1	G-2	B-1					
Humidity of pasts we. %	34 22		5					
Plasticzer, we. %	4 (sol. 1% polyethylene oxide)	7 (sol .1% polyethylene oxide)	25 (molasses)					
Catalyst geometry		Blok						
	Granules	Chanells ≥ 20 pcs/cm ²						
Decomposition of N ₂ O under conditions close to the SCR reactor $0.15\%N_2O+3.6\%O_2+3\%H_2O$ in He (280 °C)								
X _{N20} , % 100 G-2	x _{N20} , % Fraction	0.5-0.25 mm G-2 100 -	raction 0.5-0.25 mm G-2					

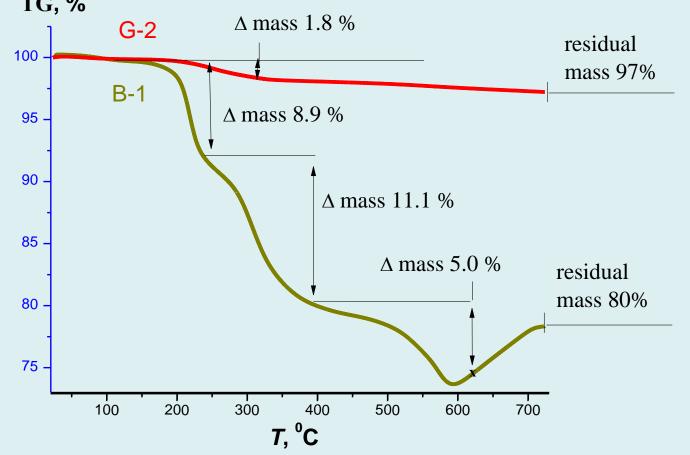
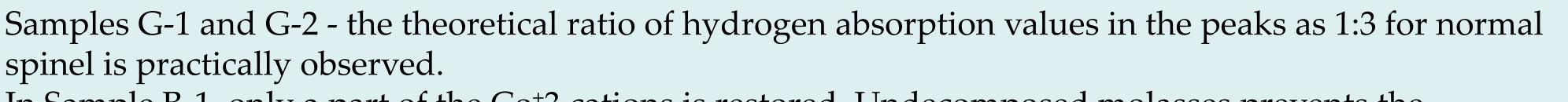
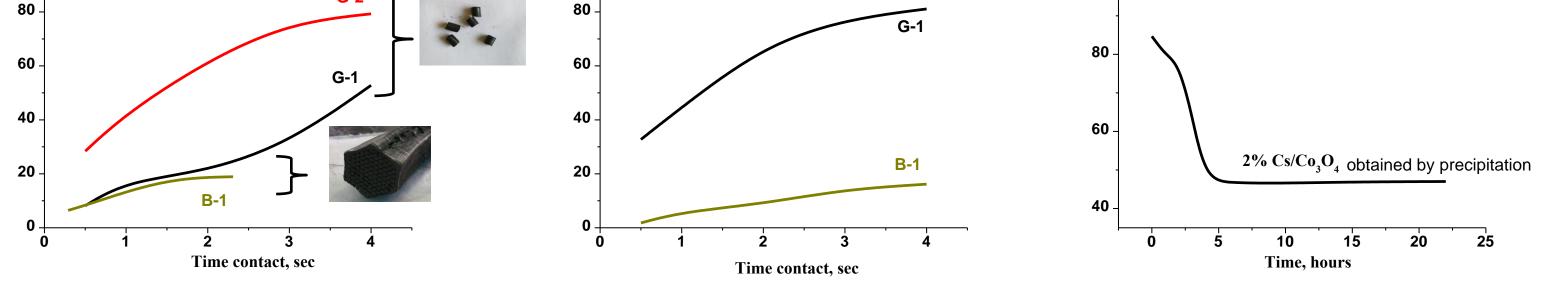




Table 1 Physicochemical characteristics of the samples

Samples	Strength granules, kg/cm ²	S _{bet} , m²/g	V _{por} , cm ³ /g	D _{por} , Å	$H_{2} - T_{2} \times 10^{-10}$ $\Sigma H_{2} \times 10^{-10}$ $T_{1} - 260 \ ^{\circ}C$ $Co^{3+} \rightarrow Co^{2}$	⁻² , mol/g
G-1	18.40	22.7	0.41	700	0.39	1.15
G-2	36.13	25.7	0.35	430	0.38	1.12
B-1	27.33	18.9	0.21	390	0.37	1.22

In Sample B-1, only a part of the Co⁺3 cations is restored. Undecomposed molasses prevents the complete reduction of Co⁺³ cations to Co⁺² at low temperatures.

The activity of fractions G-1 and G-2 is higher than that of granular samples G-1 and $G-2 \Rightarrow$ diffusion inhibition (incomplete degree of use of granules).

The activities of fraction and block fragment B-1 are almost the same \Rightarrow the best using of the inner surface of the block walls.

G-2 is highly resistant to O_2 and H_2O inhibitors for up to 22 hours.

2% Cs/Co₃O₄ sample obtained by precipitation was deactivated during the first 5 hours even at a higher temperature ($300 \ {}^{0}C$).

Conclusion

For the first time, using a waste-free technology, by extrusion molding a paste from cobalt oxide powder and a solution of cesium nitrate with the addition of polyethylene oxide, a highly active, durable granular massive catalyst for low-temperature decomposition of nitrous oxide was obtained for use in a one-reactor scheme for purification from NO_x and N₂O.

The activity of the prepared catalysts depends on the composition of the paste composition will make it possible to form an active block catalyst with a

honeycomb structure, providing a minimum pressure drop in the catalyst bed