


Synthesis of novel arylbitetrazole-based energetic materials

Gorbunov Y.K.^{1,2}, Chaplygin D.A.¹, Fershtat L.L.¹

Tetrazoles and its derivatives bitetrazoles are a promising basis for the synthesis of novel energetic materials owing to their thermostability with the highest enthalpy among five-membered nitrogen-rich heterocycles.

One of the leading directions in organic chemistry is the synthesis of heterocyclic compounds, study of their reactivity and determination of practically useful properties. Nitrogen-rich systems are of particular interest because of their valuable properties that find application in a number of high-tech industries.

Over the last few decades a search of new energetic structures has focused on high-energy-density materials (HEDMs), which are constructed on the basis of various nitrogen-oxygen and nitrogen-rich heterocycles like oxadiazoles, tetrazoles, triazoles etc., possessing high positive enthalpy of formation, good thermal stability and environmental greenness.

Characterization of 2-(p-nitrophenyl)bitetrazole Differential scanning calorimetry DSC /(mW/mg) TG /% 100 12 Mass Change: -24 % 80 10 8 60 Onset: 193.0 °C 40 Area: 979 J/g 20 0 100 150 200 250 300 Temperature /°C

	4a	TNT
density (g/cm³)	1.58	1.65
T _d (°C)	193	295
ΔH _f ° (kJ mol ⁻¹)	494	-67
P (GPa)	20.0	19.5
D (km/s)	6.6	6.9