

Coproduction of Hydrogen and Carbon Nanomaterials by Catalytic Decomposition of Methane-Hydrogen Mixtures: Experimental and Simulation Results

Shelepova E.V., Maksimova T.A., Bauman Yu.I., Mishakov I.V., Vedyagin A.A.

Boreskov Institute of Catalysis, Pr. Ak. Lavrentieva, 5, Novosibirsk, Russia, 630090

Abstract

The existing hydrogen production technologies are associated with a number of hardship and disadvantages. The process of methane catalytic pyrolysis permits one to obtain the hydrogen along with nanostructured carbon at significantly lower temperatures then thermal pyrolysis of methane. The efficiency of the catalytic decomposition of methane-hydrogen mixture over the NiO-CuO/Al₂O₃ catalyst was studied using the reactor with McBain balances. The kinetic model based on the dissociative adsorption of methane was used for the mathematical modeling. The defined kinetic constants for this model provide an appropriate fitting of the experimental points. In order to optimize the process parameters for catalytic decomposition of methane–hydrogen mixture, the mathematical modelling was carried out using the non-stationary mathematical model.

525 550 600 610 625 650 Temperature, °C

modelling

the

of

525 550 600 610 625 650 Temperature, °C

mathematical

gives an appropriate coincidence

of theory with experiment at the

values

 $k_{0}^{+} = 41 \times 10^{4} \text{ mol}/(m_{cat}^{3} \cdot s \cdot atm),$

The

following

parameters:

 $E_{a}^{+} = 53 \text{ kJ/mol},$

 $E_{a}^{-} = 17 \text{ kJ/mol},$

> The product is represented by carbon filaments varied in and diameter. The length carbon nanofibers are wellpacked ones and belong to a stacked (or "pile of plates") structural These type. filaments possess the bimodal structure composed of thin (20-100 nm in diameter) and thick (150-350 nm in diameter) fibers. Characterization of the by lowcarbon samples temperature nitrogen adsorption allows estimating their specific surface area (SSA) and pore volume (V_{pore}). It was found that the SSA and V_{pore} values lie within ranges of 120-170 m²/g and 0.16-0.18 cm³/g, correspondingly.

20 nm

Conclusions

In the present work, the efficiency of the catalytic decomposition of methane-hydrogen mixture over the NiO-CuO/Al₂O₃ catalyst was studied. The maximum CNF value of 34.9 g/g_{cat} is observed for the temperature of 610 °C with a hydrogen inlet concentration of 13 vol.%. The simulation of the process was performed using the kinetic model based on the mechanism of the dissociative adsorption of methane on the nickel-copper catalyst. The defined kinetic constants for this model provide an appropriate fitting of the experimental points. It was found that the optimal value of residence time at 610 °C is equal to 3.23×10^{-3} s.

Acknowledgement: This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis (project AAAA-A21-121011390054-1). Characterization of the samples was performed using the equipment of the Center of Collective Use "National Center of Catalysts Research". The authors are grateful to Ayupov A.B. for the useful results and discussion.

The 8th Asian Symposium on Advanced Materials (ASAM-8), Novosibirsk, Russia, July 3 – 7, 2023