Graphitization as a way to stabilize textural characteristics of alumina under hydrothermal conditions

Parfenov M.V.^{1,2}, Kazakova M.A.^{1,2}, Selyutin A.G.^{2,3}, Ishchenko A.V.^{1,2}, Kazakov M.O.^{1,2}

1–Boreskov Institute of Catalysis, 2 – Novosibirsk State University, 3 – Synchrotron Radiation Facility SKIF

 γ -Al₂O₃ is a widely used support for catalysts of various processes. The significant drawback of γ -Al₂O₃ is its instability in hydrothermal conditions, which might be essential for biomass refining processes. In the case of aqueous-phase processes, hydrothermal conditions result in transformation of γ - Al_2O_3 to boehmite, which is accompanied by degradation of the porous structure and leads to rapid catalyst deactivation.

of this work is to propose the simple one-stage approach to protect γ -Al₂O₃ porous structure from collapse under hydrothermal conditions.

Sample	C content, wt%	Graphitization degree, %
C@Al ₂ O ₃ -5	1.4	6
C@Al ₂ O ₃ -15	9.1	36
C@Al ₂ O ₃ -30	11.2	45
C@Al ₂ O ₃ -60	15.5	62
C@Al ₂ O ₃ -120	21.8	87
C@Al ₂ O ₃ -240	25.5	102

Treatment in C₂H₄ flow at 680°C for 120 min and more leads to the formation of a monolayer carbon coating on the alumina surface.

Carbon in $C@Al_2O_3$ samples, regardless of the graphitization time, is present in the form of nanocrystalline graphite with a graphene fragment size of less than 5 nm.

HRTEM data shows that the morphology of γ -Al₂O₃ consist of the mixture of lamellar

- \succ An increase in graphitization time leads to a slight decrease in BET surface area of $C@Al_2O_3$ samples.
- $\succ \gamma$ -Al₂O₃ transforms into boehmite during hydrothermal treatment (XRD data).
- \triangleright Hydrothermal treatment leads to a decrease in the initial γ -Al₂O₃ surface area by 80%.
- > A monolayer (or more) graphite coating of alumina under HTT contributes to the formation of a mesoporous C@boehmite composite with a high specific surface area similar to the initial material.

 \blacktriangleright An increase in the duration of HTT from 5 to 72 h does not lead to additional structural

and textural changes, which indicates the stability of the formed C@boehmite

composite.

Conclusion

Coating with carbon makes it possible to adapt γ -Al₂O₃ to hydrothermal conditions, which makes $C(a)Al_2O_3$ composites a promising support for catalysts of various aqueous-phase reactions.

M.A. Kazakova, A.G. Selyutin, M.V. Parfenov, A.V. Ishchenko, M.O. Kazakov, Micropor. Mesopor. Mat, 341 (2022) 112038.

The study was funded by Russian Science Foundation according to the research project No 21-73-10039, https://rscf.ru/project/21-73-10039/