1. Introduction
The properties of silver nanoparticles have been extensively studied in laboratory and animal studies. These nanoparticles are used for various purposes, such as biocidal and antioxidant activities. Various shapes of nanoparticles can be constructed depending on the applications based on conventional methods.

2. Formalism
2.1. Numerical analysis
The main focus of our numerical analysis is based on important parameters, i.e., temperature and size, which are shown for a clear understanding of physical behavior of nanoparticles. Firstly, the diffusion of microparticles with respect to the temperature is evaluated as

\[D = D_0 \exp(-\frac{Q}{RT}) \]

where
- \(D \) is the diffusion coefficient
- \(D_0 \) is a pre-exponential factor
- \(Q \) is the activation energy
- \(R \) is the gas constant
- \(T \) is the temperature

Since there is no major effect on the diffusion of microparticles, we can assume that the diffusion coefficients of the same microparticles in an aqueous medium are also discussed in detail. Moreover, to the best of our knowledge we are able to address the physical and chemical aspects of nanoparticles in terms of nanoparticle size and shape.

3. Graphical Analysis

4. Discussion and Conclusions
We have discussed the effect of temperature on both microparticles as well as silver nanoparticles. The maximum values for the diffusion coefficient of microparticles with respect to temperature are evaluated and are discussed in detail.

References