MICROHARDNESS EVOLUTION OF LASER-DEPOSITED EQUIATOMIC FeNiCr COATINGS IN-SITU ALLOYED WITH B₄C

Okulov A.V.¹, Korobov Yu.S.¹, Stepchenkov A.K.¹, Makarov A.V.¹, Iusupova O.S.¹, Korkh Yu.V.¹, Kuznetsova T.V.¹, Kharanzhevskiy E.V.²

¹M.N. Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, 620108 Ekaterinburg, Russia
²Udmurt State University, 426034 Izhevsk, Russia
*okulovartem@imp.uran.ru

THE STUDY GOAL: Evaluate the impact of in-situ B₄C alloying on the microhardness evolution of composite FeNiCr-B₄C coatings synthesized by pulsed laser cladding.

Laser cladding combined with in-situ B₄C alloying process can be considered as a promising method for obtaining strength composite FeNiCr-B₄C coatings.

CONCLUSION