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Abstract

The AFB_BJ+-AC∗ algorithm is one of the latest algorithms
used to solve Distributed Constraint Optimization Prob-
lems (DCOPs). It is based on simple arc consistency (AC∗)
to speed up the process of solving a problem by perma-
nently removing any value that doesn’t belong to its opti-
mal solution. In this paper, we use a directional arc consis-
tency (DAC∗), the next higher level of AC∗, to erase more
values and thus to quickly reach the optimal solution of a
problem. Experiments on some benchmarks show that the
new algorithm, AFB_BJ+-DAC∗, is better in terms of com-
munication load and computation effort.

I Introduction

In a DCOP, variables, domains, and constraints are dis-
tributed among a set of agents. Each agent has full con-
trol over a subset of variables and constraints. A DCOP is
solved in a distributed manner via an algorithm allowing
the agents to cooperate with each other to find a solu-
tion with a minimal cost. A solution to a DCOP is a set of
value assignments, each representing the value assigned
to one of the variables in that DCOP. AFB_BJ+-AC∗[1] is
one of the recent algorithms which uses soft arc consis-
tency (AC∗) to solve DCOPs. In this work, instead of us-
ing AC∗ with AFB_BJ+, we use Directional AC∗ (DAC∗).
This helps to largely narrow down agents’ domains of a
given DCOP and thus quickly reach its optimal solution.
This change produces a new algorithm called AFB_BJ+-
DAC∗. Our experiments on different benchmarks show
the superiority of AFB_BJ+-DAC∗ algorithm in terms of
communication load and computation effort.

II Background

1 DCOP

A DCOP [2] is defined by 4 sets:
•A = {A1, A2, ..., Ak} : Agents;

•X = {x1, x2, ..., xn} : Variables;

•D = {D1, D2, ..., Dn} : Domains;
⋆ Di : the possible values of xi

• C = {cij : Di × Dj → R+} ∪ {ci : Di → R+} :
Constraints

Objective:

find a solution S with
∑

ci + cij, Ci, Cij ∈ S is
minimized

For simplicity purposes, we consider a restricted version
of DCOP where two variables, at most, are linked by
one constraint (i.e., unary or binary constraint) and each
agent is responsible for a single variable (k = n).

2 Directional Arc Consistency (DAC∗)

DAC∗ is a set of rules that are applied to a problem to
remove values that are not part of its optimal solution.
A problem is DAC∗ if each variable xi of this problem is
DAC∗ with its neighbors xj, such that j > i. A variable xi
is DAC∗ with respect to its neighbor xj, such that j > i, if
each value vi ∈ Di satisfies Cϕ+ ci(vi) < UBi, and there
is a value vj ∈ Dj which satisfies cij(vi, vj) + cj(vj) = 0.
vj is called a full support of vi.

⋆ cij(vi, vj) is the binary cost of (vi, vj).
⋆ cj(vj) is the unary cost of vj.
⋆ Cϕ is the global lower bound.
⋆ UBi is the global upper bound.

AFB_BJ+-DAC∗ algorithm

AFB_BJ+-DAC∗ algorithm works according to five main
steps:
1. Initialization : a static order is applied to agents of the
problem. Each agent initializes its data structures and the
first agent starts enforcing DAC∗.

2. Enforcing DAC∗ : the current agent xj updates its bi-
nary constraints shared with its higher neighbors using
the received extension values. Then, it performs, for each
higher neighbor xi, two projections: the first one to up-
date its unary costs, and the second one to update the
value of Cϕ. After all, it filters its domain Dj by removing
any value vj that satisfies cj(vj) + Cϕ ≥ UBj. Finally,
it performs a cost extension to its lower neighbors xk by
shifting its unary costs to binary costs. Then, it performs a
binary projection on its lower neighbors to keep the sym-
metry of the binary constraints shared between them.

3. Assigning variables : the current agent xj chooses,
for xj, a value from its previously filtered domain Dj to
extend the CPA Y j by its value assignment (xj, vj). If xj
has successfully extended the CPA, it sends an ok? mes-
sage to the next agent asking it to continue the exten-
sion of CPA Y j. This message loads the extended CPA
Y j, its guaranteed costs, the Cϕ, the list of extension val-
ues, and the list of deleted values. At the same time, it
sends fb? messages to unassigned agents asking them to
evaluate the included CPA and send their estimates on it.
Y = Y j = [(x1, v1), . . . , (xj, vj)] is a current partial as-
signment (CPA).

4. Evaluating the CPA : When receiving an fb? mes-
sage, each receiving agent computes the lower bounds
corresponding to the received CPA Y j, then it sends them
to the requesting agent xj via an lb message. The lower
bounds represent the cost estimates, on the CPA Y j, of
each agent not yet assigned with respect to its lower
neighbors. When receiving an lb message, xj computes
the global lower bound for the evaluated CPA Y j and
checks if it exceeds UBj.

5. Backjumping : If the global lower bound of CPA ex-
ceeds UBj, xj changes the value assigned to its variable
by a more appropriate one if it exists. If it does not exist, it
backjumps to the previous agents exactly the guilty agent
by sending it a back message. If the guilty agent does not
exist or the domain of xj becomes empty, xj stops its ex-
ecution and informs the others via stp messages.

AFB_BJ+-DAC∗ continues in this manner by repeating
these steps until a solution with minimal cost is found.

Experimental Results

We experimentally compare AFB_BJ+-DAC∗ with its
older versions [2, 1] and with the BnB-Adopt+-DP2 al-
gorithm [2], which is its famous competitor.
To compare the algorithms, we use two metrics, the
total of messages exchanged (msgs) for the communi-
cation load and the total of non-concurrent constraint
checks (ncccs) for the computation effort.
An example of benchmarks used in these experiments
is meetings scheduling. These are problems in which a
number of participants seek to meet, either in pairs or
in groups, at a given place and date. The objective is
therefore to know how to plan these meetings so that
all the participants are satisfied. We have evaluated 4
cases A, B, C, and D, which are different in terms of
meetings/participants.
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Figure 1: Total of msgs sent and ncccs for meetings scheduling

The results obtained (Fig. 1) show a clear improvement
of the AFB_BJ+-DAC∗ compared to others, whether for
msgs or for ncccs.
By analyzing these results, we can conclude that the
AFB_BJ+-DAC∗ is better than its earlier versions be-
cause of the existence of DAC∗ which allows agents to
remove more suboptimal values.

Conclusion

In this paper, we have introduced the AFB_BJ+-DAC∗

algorithm. It relies on DAC∗ to generate more dele-
tions and thus quickly reach the optimal solution of a
problem. DAC∗ mainly relies on performing a set of
cost extensions in one direction from an agent to its
lower priority neighbors in order to perform AC∗ multi-
ple times. Experiments on some benchmarks show that
the AFB_BJ+-DAC∗ behaves better than its older ver-
sions. As future work, we propose to exploit the change
in the size of the agent domains in variable ordering
heuristics.
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