Algebraic Formal Modelling of EIGRP Using ACP Formal description modelling on EIGRP routing protocol

Pedro Juan Roig ${ }^{1}$, Salvador Alcaraz ${ }^{1}$, Katja Gilly ${ }^{1}$, Cristina Bernad ${ }^{1}$ and Carlos Juiz ${ }^{2}$ ${ }^{1}$ Department of Computer Engineering, Miguel Hernández University,

Flow chart for EIGRP tables

Flow chart for EIGRP convergence

Flow chart for EIGRP reconvergence

Model for timing EIGRP

$$
\begin{aligned}
& +\sum_{j=1}^{m}\left(\left(1 \triangleleft t_{\text {hello }-i, j}=0 \triangleright 0\right) \cdot\left(\left(t_{\text {ello }}^{-i, j},-T_{\text {hello }}\right) \cdot(\ldots)\right)\right)+
\end{aligned}
$$

Model for non-timing EIGRP

$$
+\sum_{k=1}^{m-\leq 1 /}\left(P_{d_{k}} \triangleleft F C_{i, j}\left(d_{k}\right) \triangleright A_{d} \cdot L A B E L\right)+
$$

$$
+\sum_{k=1}^{m-1 j k}\left(\sum_{d=1}^{n_{i}}\left(P_{d_{k}} \triangleleft F C_{i, j}\left(d_{k}\right) \triangleright A_{d} \cdot L A B E L\right)\right) \cdot\left(d_{j} \leftarrow D_{i}\right)
$$

$$
\begin{aligned}
& R(i)=\sum_{j=1}^{m}\binom{s_{i, j}(h) \cdot r_{i, j}(h) \cdot s_{i, j}(u) \cdot r_{i, j}(A C K) \cdot}{\cdot r_{i, j}(u) \cdot s_{i, j}(A C K) \cdot \sum_{d=1}^{n_{j}}\left(\left(d \rightarrow D_{i}\right) \cdot P_{d}\right)}+ \\
& +\sum_{j=1}^{m}\binom{r_{j i i}(h) \cdot s_{j, i}(h) \cdot r_{j, i}(u) \cdot \cdot_{j, i}(A C K) .}{\cdot \sum_{d=1}^{n}\left(\left(d \rightarrow D_{i}\right) \cdot P_{d}\right) \cdot s_{j, i}(u) \cdot r_{j, i}(A C K)}+ \\
& +\sum_{j=1}^{m}\left(s_{i, j}(h)\right)+\sum_{j=1}^{m}\left(r_{j, i}(h)\right)+\sum_{j=1}^{m}\left(s_{i, j}(u) \cdot r_{i, j}(A C K)\right)+ \\
& \left(r_{j, i}(u) \cdot s_{j, i}(A C K)\right. \text {. }
\end{aligned}
$$

PATCH
$s_{k, i}\left(r_{S I A}\right) \cdot r_{k, i}(A C K)$
$\left(s_{k, u}\left(q_{S I A}\right) \cdot r_{k, u}(A C K)\right.$
 $\cdot s_{s_{i}\left(r_{s h}\right)} \cdot r_{k_{j}}(A C K)$ $\left(\begin{array}{l}\binom{r_{k+1}\left(r_{d}\right) \cdot S_{k t}(A C K) \cdot P_{d}}{\Delta r_{d} \in D_{u} \triangleright\left(d \leftarrow D_{d}\right)}\end{array}\right)$
,

LABEL

