New approch to improve keets viability in Togo

Bilalissi A. 1, Lombo Y.1, Kossoga K. A.1, Batimsoga B.B.1, Bagna B.1, Tare T.T.1, Dossou E.1 and Ayanou K.1 ¹Togolese Institute of Agronomic Research (ITRA), BP 1163, Lome-Togo

@:abilalissi18@gmail.com

Outlining the issue

In Africa, the mortality rate of guinea fowl varies between 50 and 100 % in traditional guinea fowl farms (Sulla et al., 2012). These mortalities occurs early in the life of the birds. Faced with this situation, it is necessary to develop substances that are effective and inexpensive and locally available to optimize the production of guinea fowl in Togo. A new approach to deal with these mortalities could be the use of a new product called MAGMA Polyvalent vaccine.

Outlining the objective

Assess the effectiveness of MaGMa Polyvalent vaccine (MPV) on the keets viability and growth performances

Material and Methods

- 650 birds were weighed and assigned into 05 treatments (each treatment consisted with 5 replicate with 25 birds / replicate).
- The treatments were as follows:
- √ T+ group: keets that received the normal prophylaxis without the MPV
- ✓ T- group: keets that received neither the normal prophylaxis nor the MPV,
- √ T1, T2 and T3 groups: keets that received 1, 2 and 3 mL of MPV,
- The route of injection of MPV was intramuscular, once a week during 8 weeks
- Dead birds and growth performances were evaluated
- Data were subjected to 1-way ANOVA analysis using Graphpad Prism 8.0 software

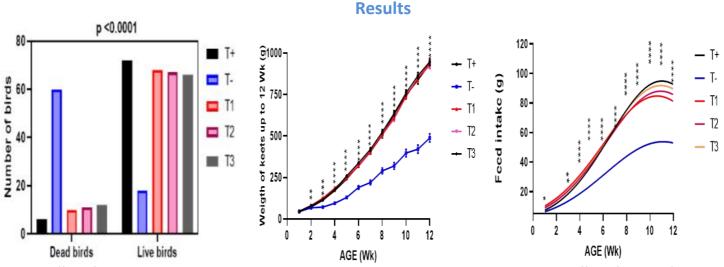


Fig. 1: Effect of MPV on keets viability Fig. 2: Effect of MPV on keets weigth up to 12 weeks Fig. 3: Effect of MPV on feed intake

Parameters	Treatments					p Value
	T+	T-	T1	T2	Т3	
GB (10³/μL)	197.9 ± 1.79 ^b	239.7 ± 2,21ª	201.6 ± 1.65 ^b	200.6 ± 1.97 ^b	196.3 ± 0.85 ^b	<0.0001
HGB (g/dL)	13.82 ± 0.21 ^a	11.07 ± 0.29 ^b	13.95 ± 0.27a	14.09 ± 0.28ª	$13.6 \pm 0.21^{\mathrm{a}}$	<0.0001
HCT (%)	41.13 ± 0.66	39.61 ± 0.29	41.51 ± 0.92	41.69 ± 0.79	40.74 ± 0.60	0.2398

Conclusion

Table 1: effect of MPV on hemaetological parameters

The MPV reduced significantly the mortality rate of guinea fowl but did not impact growth performances.

Acknolegement

It can be concluded that, MPV can be used as antibiotics alternative to improve Keets viability in Togo.