


**BEHAVIOR OF THE TEMPERATURE DEPENDENCE OF DIELECTRIC CONSTANTS AND CURIE TEMPERATURE OF** PT-IMPLANTED MODIFIED BaTiO<sub>3</sub>, KNbO<sub>3</sub>, PbZrO<sub>3</sub>,  $Pb_{0.88}LN_{0.08}Ti_{0.98}Mn_{0.02}O_{3}$  (LN =La, Eu) CERAMICS E. Suaste Gómez, J. J. A. Flores Cuautle Electric Engineering Department, CINVESTAV-IPN, Mexico City, Mexico Abstract

Based on the multilayer capacitor concept, a metallic wire was implanted during ferroelectric ceramic fabrication process. With this particular way of doing the fabrication it could be achieve a new device: Ceramic-Controlled Piezoelectric (CCP). The temperature dependence (from room temperature) of dielectric constants was described for the implanted specimens.

### temperature Fig 5 The dielectric dependence of constants and point of phase transition a) $BaTiO_3$ as reference, without implant and b) Pt-implanted modified BaTiO<sub>3</sub>



## Introduction

The major application of ferroelectrics is for capacitor, utilizing their high dielectric constant around the Curie Temperature  $(T_c)$ . An increment in its capacity can be obtained if is added some internal layers [1], in this context a metallic insert into the ceramic modified its dielectric constant, thus a Pt-wire was implanted during the fabrication of ferroelectric ceramic. Pt-wire in total immersion in the ceramic acts as an electrode. The function of this extra electrode is the modification of permittivity of the ceramic ferroelectric or piezoelectric

### Experimental

To prepare the ceramics, the conventional oxide mixture technique, was used [2]. The powders were mixed by ball-milling, for  $Pb_{0.88}Ln_{0.08}Ti_{0.98}Mn_{0.02}O_3$  (Ln =La, Eu) ceramics [3], powders were pressed and calcined in a programmable oven, at 800°. After calcining, the powders were ground and ball-milled again. For all specimens, powders were pressed into discs of 10mm diameter and 2mm of thickness, during this process a Pt-wire was implanted into the ceramic. These discs were sintered from 800 to 1240°C according to the kind of ceramic, at the same time others samples without implant were processed together as reference.

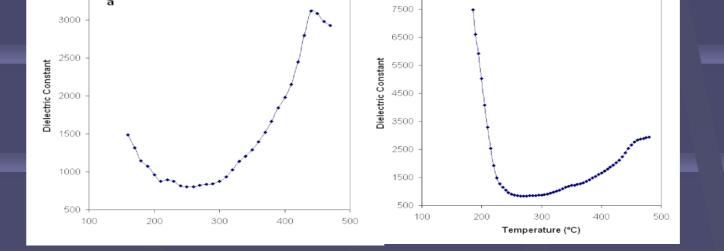
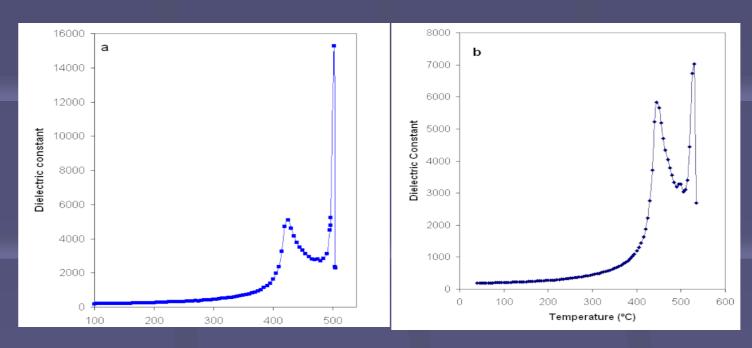




Fig Temperature dielectric dependence of PbZrO<sub>3</sub> constants of the reference ceramic a) and b) ceramic with Pt-wire implant.



dependence of dielectric constants and point of phase transition a) KNbO<sub>3</sub>, without implant and b) Ptimplanted modified KNbO<sub>3</sub>

The

Fig

temperature

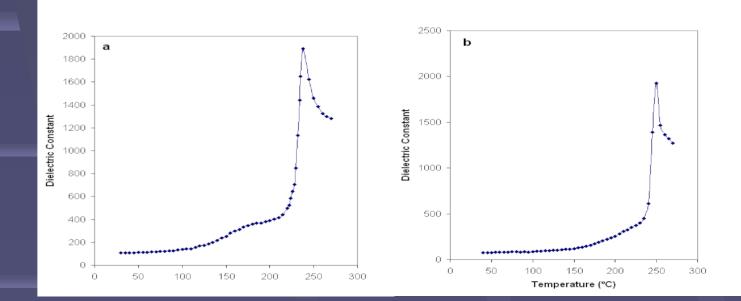
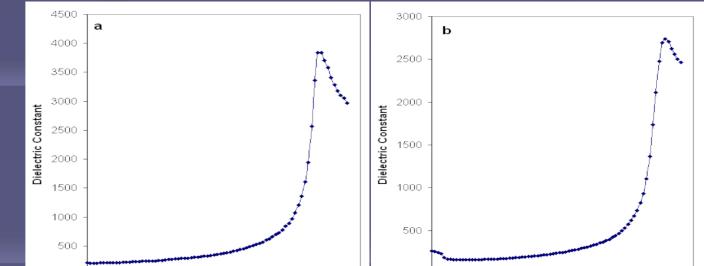
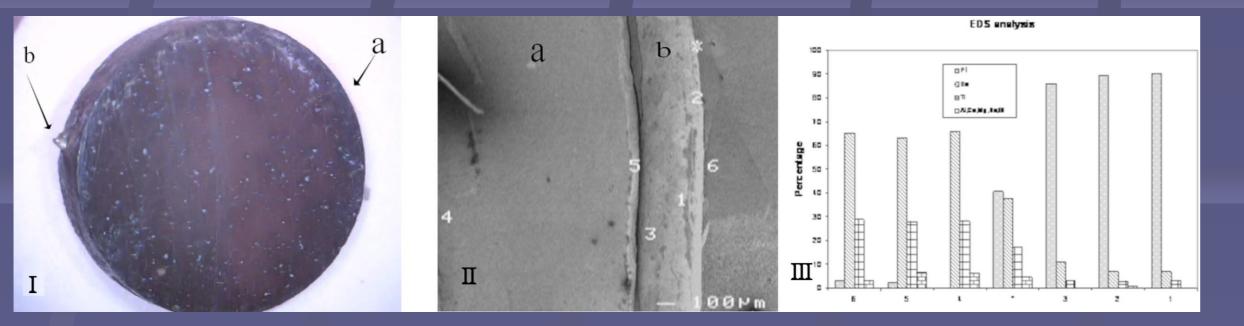





Fig 8Temperature dependence of dielectric constants of the  $Pb_{0.88}La_{0.08}Ti_{0.98}Mn_{0.02}O_3$ reference ceramic a) and b) ceramic with Pt-wire implanted





Single disk ceramic: a) ceramic b) Platinum wire, II) 2 I) Fig Photomicrograph of BaTiO<sub>3</sub> with 100 $\mu$ m resolution. III) EDS Analysis corresponding to the marked points.

Curie Temperature ( $T_c$ ) was determined using a high temperature oven, Carbolite HTC 1600, increasing its temperature in a 5°C/min step until 160°C. The sample was dragged into the oven, and the ceramic capacitance was measured with an Beckman LM22A RLC at a 1kHz frequency.

The CCP was tested also by measure its dielectric constant while a variable voltage was applied in the extra-electrode

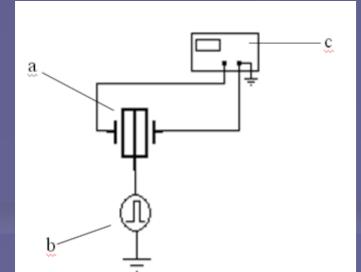
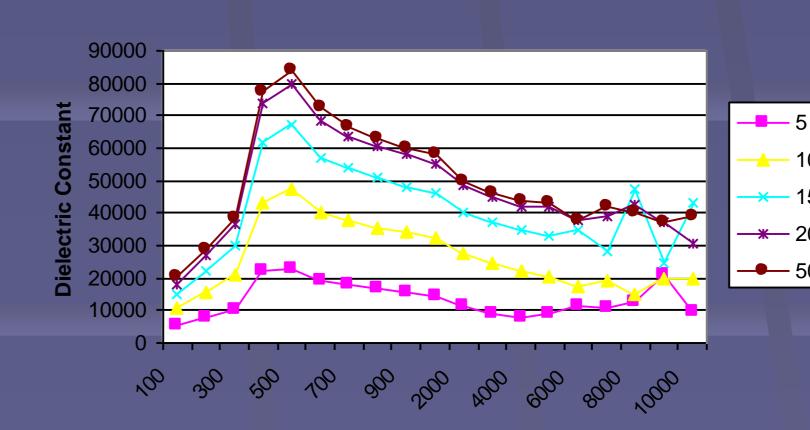
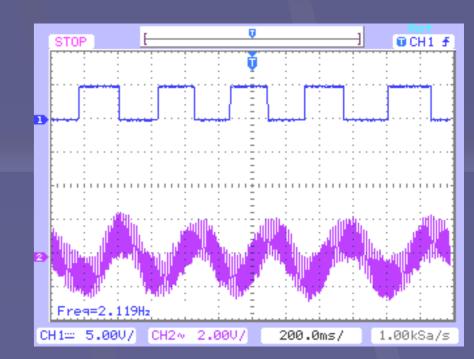




Fig 3 Experimental setup for test a CCP ( $BaTiO_3$ ), a variable signal applied in the control was while electrode the dielectric constant was measurement a) CCP, b) Pulses generator with variable voltage, c) Capacity measurement

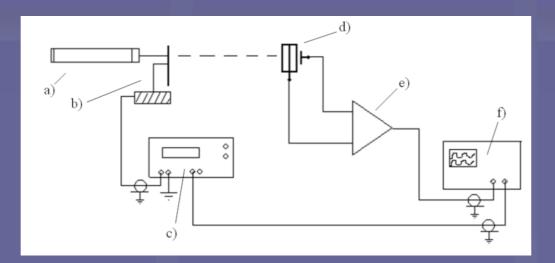



#### Frequency (Hz)

Fig 11 Signals obtained from the experimental setup showed in fig 4 the upper signal is from chopper control and lower signal obtained from CCP



Dielectric 10 constant Fig behavior when an alternant - 5 Volts 10 Volts electric field is applied in the <sup>15 Volts</sup> electrode control at different frequencies and voltages with - 50 Volts experimental the setup indicated in fig 3




### Conclusions

Platinum-implant with its dimensions allowed the ceramics sintering, others tests with different diameter of platinum wire was made, but larger size did not permit the ceramic sintering. A shift in T<sub>e</sub> was found in four of five kind of ceramics under study, 9, 5, 5 and 3% for KNbO<sub>3</sub>, PbZrO<sub>3</sub>, Pb $_{0.88}$ La $_{0.08}$ Ti $_{0.98}$ Mn $_{0.02}$ O<sub>3</sub> and Pb<sub>0.88</sub>Eu<sub>0.08</sub>Ti<sub>0.98</sub>Mn<sub>0.02</sub>O<sub>3</sub> respectively. From the dielectric constant graphs, it could be seen the same shape between Pt-implant and reference ceramics, so it is a no modified crystal structure signal. CCP could be a useful device in many applications based on its modifiable dielectric constant.

An optical probe was made by focus a laser beam over one side of the CCP and extracting a signal by the electrode control, laser beam was modulated by a mechanic chopper.

Fig 4 CCP As light laser sensor (633 nm). a) Laser, b) Chopper, c) Chopper control d) CCP, e) Amplifier, f) Oscilloscope.



## Results

Single disks with Pt-wire implanted were obtained and shift  $T_c$  and dielectric constant variations among ceramics with Pt-wire and reference ceramics were found.

# References

[1] Uchino K: Ferroelectric Devices, Marcel Dekker, Inc., New York, United States, 2000. [2] Jaffe B, Cook Jr, W. R. and Jaffe H: Piezoelectric ceramics, Academic Press, London, Great Britain, 1971

[3] R. González, "Fabricación de Cerámicas Piezoeléctricas de Pb0.88Ln0.08Ti0.98Mn0.02O3 (Ln = La, Sm, Eu) para el Desarrollo de Transductores Ultrasónicos y Sensores Piroeléctricos de Uso Biomédico", Tesis de Maestría, Sección Bioelectrónica, Departamento de Ingeniería Eléctrica, CINVESTAV-IPN, México, 2003.