
Figure 1. Geographical distribution of Phanerozoic magmatism in NE Brazil based on 
Hollanda et al. (2019).
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The Rio Ceará–Mirim magmatism is represented by a 
giant dyke swarm ca. 1000 km–long (Fig. 1), comprising 
mac dolerites with Early Cretaceous age (~130 Ma). 
Those dykes are intrusive into Precambrian Borborema 

5 2Province (NE Brazil) spread in a region ca. 5 × 10  km , 
arranged along an arcuate trend (E–W to NE–SW) from 
the Atlantic coastline towards NW border of the São 
Francisco craton – it is one of the largest Mesozoic dyke 
swarms related to the Gondwana breakup. 

The dykes are ne– to medium– grained, holo– to 
hypocrystalline. The common mineral composition 
includes plagioclase, augite, pigeonite and Fe-Ti oxides. 
Gechemically, they are dominated by high–Ti tholeiites 
(TiO >2%), followed by low–Ti tholeiites (TiO <2%), rare 2 2

trachyandesites (SiO >57%; Fig. 2) and olivine tholeiites. 2

In this work we present an integrate characterization of 
whole–rock geochemistry (major, minor and REE) and 
Sr–Nd–Pb isotopes of the Rio Ceará–Mirim magmatism.

GEOCHEMICAL AND ISOTOPIC SIGNATURE OF A 
MESOZOIC 1000 KM–LONG ARCUATE DYKE 

SWARM IN NE BRAZIL

Introduction

On the TAS diagram high–Ti tholeiites are spread though the elds of basalts–basaltic andesite–basaltic trachyandesite and minor 
trachybasalts (Fig. 2), while low–Ti tholeiites are basalts to basaltic andesites. Rb, Ba, Pb enrichments combined to Nb-Ta depletion are 
common to all geochemical groups (Fig. 4) suggesting evolution from enriched lithospheric sources also suggested by Th–Nb content (Fig. 

143 144 87 863). Isotope parameters (initial Nd/ Nd, Sr/ Sr and Pb/Pb ratios) for the high–Ti tholeiites are (average values; Fig. 5 and 6): 0.512340, 
206 204 207 204 208 2040.70600, Pb/ Pb ~ 17.60, Pb/ Pb ~15.50 and Pb/ Pb ~37.50. 

Low–Ti tholeiites, in turn, are characterized into two slightly different groups: (i) Milhã type composed by dolerites with MgO<4.5 wt.% and 
143 144 143 144average initial Nd/ Nd 0.512260 and (ii) Pio IX type with dolerites showing MgO>6.4 wt.% and Nd/ Nd 0.512420. Initial Sr and Pb ratios 

87 86 206 204 207 204 208 204are quite similar in both low-Ti types ( Sr/ Sr ~0.70800, Pb/ Pb ~18.20, Pb/ Pb ~15.60, Pb/ Pb ~38.40). A third group of 
143 144 87 86 206 204 207 204 208 204trachyandesites (initial Nd/ Nd 0.512320, Sr/ Sr 0.70800, Pb/ Pb~ 17.90, Pb/ Pb ~15.57, Pb/ Pb ~37.90) is recognized in 

spatial and genetic relationship with the high-Ti dolerites, which are modelled as products of fractional crystallization from high-Ti magmas. 

Results

1,2 1Antomat Macêdo Filho , Maria Helena Hollanda  

1
Geosciences Institute, University of São Paulo, São Paulo, Brazil, antomat@usp.br

2W.H.Bryan Mining & Geology Research Centre/SMI, The University of Queensland, St Lucia, QLD, Australia

The cartography of the dykes was made combining 
aeromagnetic data, remote sensing products and eld 
campaigns. Hand samples were collected considering 
geograph ic  se t t ing bes ides fac io log ica l  and 
compositional variation of lithologies and then analyzed 
by:

Ÿ XRF (major oxides);
Ÿ ICP–MS (content of trace elements and REE);
Ÿ ID–TIMS (Sr–Nd–Pb ratios).

The Borborema Province has not only recorded the effects of several convergence and collisional events associated to the 
Brasiliano/Pan-African event (650-550 Ma) to form the West Gondwana supercontinent, but also of crustal accretion in the Paleoproterozoic. 
In that complex geodynamic setting, subduction followed by slab dehydration and some degree of crustal contamination (during 
emplacement) were certainly responsible to chemically modify the lithosphere towards an enriched signature, that is very close to modern 
subarc-type mantle sources. Nd model ages calculated for the Rio Ceará-Mirim dolerites range from ca. 1.5 to 1.0 Ga indicating that the 
mantle reservoir melted to generate their parental magmas was, at least in part, an ancient mantle. This is fully compatible, therefore, with 
existence of an enriched mantle long-term (EMI-like) preserved from Proterozoic to Mesozoic times beneath NE Brazil. In addition, possible 
asthenospheric contribution is suggested by part of olivine tholeiites from EW–RCMDS (Ngonge et al., 2016a). In this scenario, primitive 
melts could have had mixing with enriched components derived from fertile portions of the SCLM to give rise RCM magmatism.

Conclusion

87 86 .143 144Figure 5. Sr/ Sr vs Nd/ Nd plot of Rio Ceará-Mirim dykes.The red 
and gray curves represent AFC vectors. Mafic tonalite from Ceará 
Central domain was taken as representant of proterozoic crust, while a 
granulite sample from São Francisco Craton was considered as 
archaean crust contaminant. 
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Figure 6. Isotopic plots (Sr-Nd-Pb) of Rio Ceará-Mirim magmatism in 
comparison with mantle end-members (kimura et al., 2016).
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Figure  4. Incompatible element profiles for geochemical groups of Rio Ceará-Mirim magmatism. The parameters were normalized to primitive mantle of 
Sun and McDonough (1989).
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Figure  2. TiO  vs. MgO plot and TAS diagram showing the range of composition for RCM magmatism. 2
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