

Abstract

The flavanol -(-)epicatechin (EPI) is a naturally occurring component of cocoa, consumption of which is associated with numerous cardiovascular health benefits. Chronic EPI reportedly augments mouse skeletal muscle capillarity and mitochondrial density (Nogueira et al, J Physiol, 589, 2011). These effects may translate to improved skeletal muscle O_2 delivery-utilization matching (i.e. \uparrow microvascular O_2 pressure (PO₂mv)) during contractions. We tested the hypothesis that EPI would elevate PO₂mv at rest and contractions. Rats were administered EPI (2mg/kg, n=5) or water (CON; n=5) via oral gavage twice daily for 21 days. PO₂mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 180 s of 1 Hz twitch contractions. EPI did not change resting baseline PO₂mv (EPI=29±4; C=30±2 mmHg; p>0.05). Following the onset of contractions the time delay (EPI=9±1; C=8±2 s; p>0.05) and time constant (time to 63% of transient response, EPI=16 ±4; C=23±3 s; p>0.05) of the PO₂mv fall were not altered by EPI nor was contracting steady-state PO₂mv (EPI=18±4; C=19±2 mmHg; p>0.05). Despite previous reports of the efficacy of EPI to improve the O₂ transport pathway, the present data indicate that chronic EPI treatment (2mg/kg) does not improve skeletal muscle microvascular oxygenation at rest or during contractions. (Funding: ACSM, AHA Midwest Affiliate 0750090Z, NIH HL-108328)

Background

Chronic intake of the flavanol epicatechin (EPI) is associated with reduced risk and prevalence of cardiovascular disease (Janszky et al., 2009) as well as reductions in MAP (Ellinger et al., 2012).

In mice EPI improves exercise capacity secondary to increases in skeletal muscle capillarity and mitochondrial volume density (Nogueira et al., 2011).

Given that EPI promotes endothelial function and vasodilation it is plausible that augmented vascular control also underlies improvements in exercise performance (Grassi et al., 2005).

Hypothesis

Chronic EPI supplementation in healthy rats would

- 1) reduce MAP at rest and during contractions
- 2) improve exercise performance (VO₂peak and time-to-fatigue (T_{lim}))
- 3) increase skeletal muscle O_2 delivery-utilization matching (i.e. \uparrow microvascular O_2 pressure (PO₂mv)) at rest and during in situ contractions

Methods

10 Young adult male Sprague-Dawley rats.

Supplementation: Administration of either EPI (2mg/kg , n=5) or water (CON; n=5) via oral gavage twice daily for 21 days.

5 days of acclimatization to high speed running on a custom built motor driven treadmill (~5 min).

Chronic (-)-epicatechin administration does not affect contracting skeletal muscle microvascular oxygenation

Clark T. Holdsworth, Steven W. Copp, Tadakatsu Inagaki, Daniel M. Hirai, Scott K. Ferguson, Gabrielle E. Sims, Michael J. White, David C. Poole, Timothy I. Musch **Departments of Kinesiology, Anatomy & Physiology - Kansas State University**

<u>Timeline</u>				
Pre-intervention performance testing	21 day intervention	Post-intervention performance testing	PO ₂ mv protocol	
Performance testing				
T _{lim} - motor-driv m/min. Incre exhaustion (C	ven treadmill at ased by 5 m/m Copp et al., 200	: 5% grade. Init nin every 15 mi 9).	ial speed 20 n until	
VO ₂ peak - via r Ramp increas grade until a	netabolic cham se of ~5-10 m/ plateau in V0 ₂	nber placed on min every minu with increasing	the treadmill. Ite at 5% speed.	
<u>Microvascular O₂ pressure</u>				
Allows assessment of the O ₂ -delivery ($\dot{Q}O_2$) to O ₂ -utilization ($\dot{V}O_2$) balance which constitutes the driving force for blood-myocyte O ₂ flux				
Surgical exposure of spinotrapezius under anesthesia with sutured electrodes:				
			722	
Preparation- p spinotrapeziu contractions 2001).	hosphorescence is at rest and 18 (~5-8 V, 2 ms p	e quenching of 80 s of 1Hz twit ulse duration) (the tch Behnke et al.,	
Modeling- PO ₂ exponential f	mv curve fitting it	utilizing a time	e delay and	
	Res	ults		
Body mass wa 387±14; EPI:	as not differen 399±20 g, P>	t between gro 0.05)	ups (CON:	
There were no or [lactate] be	o differences in etween control	n arterial blood and EPI group	d pH, PO_2 , PCO_2 os at rest or	

during exercise (P>0.05).

Figure 2: EPI did not alter post-intervention \dot{VO}_2 peak

Table 1: Spinotrapezius PO₂mv kinetics

	CON	EPI
PO ₂ mv _(baseline) , mmHg	33.2 ± 2.5	33.4 ± 2.6
ΔPO ₂ mv, mmHg	15.1 ± 1.1	14.4 ± 1.3
Time constant, s	17.4 ± 2.6	14.0 ± 3.2
Time delay, s	7.9±1.3	7.8±1.1
PO2mv(steady-state), mmHg	21.3 ± 2.0	22.0 ± 2.2
Mean response time, s	25.2 ± 2.8	21.8 ± 4.2

Conclusions

•EPI was efficacious in lowering MAP consistent with previous reports.

•Exercise performance was not improved with EPI.

•Despite the reduction in driving pressure, chronic EPI treatment (4mg/kg) did not alter PO₂mv in situ.

References

Behnke BJ, Kindig CA, Musch TI, Koga S, and Poole DC. Dynamics of microvascular oxygen pressure across the rest-exercise transition in rat skeletal muscle. *Respiration Physiology* 126: 53-63, 2001. **Copp SW, Davis RT, Poole DC, and Musch TI.** Reproducibility of endurance capacity and VO2peak in male Sprague-Dawley rats. *Journal of Applied Physiology* 106: 1072-1078, 2009.

Ellinger S, Reusch A, Stehle P, and Helfrich HP. Epicatechin ingested via cocoa products reduces blood pressure in humans: a nonlinear regression model with a Bayesian approach. *The American Journal of Clinical Nutrition* 95: 1365-1377, 2012.
Grassi D, Necozione S, Lippi C, Croce G, Valeri L, Pasqualetti P, Desideri G, Blumberg JB, and Ferri C. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. *Hypertension* 46: 398-405, 2005.
Janszky I, Mukamal KJ, Ljung R, Ahnve S, Ahlbom A, and Hallqvist J. Chocolate consumption and mortality following a first acute myocardial infarction: the Stockholm Heart Epidemiology Program. *Journal of Internal Medicine* 266: 248-257, 2009.
Nogueira L, Ramirez-Sanchez I, Perkins GA, Murphy A, Taub PR, Ceballos G, Villarreal FJ, Hogan MC, and Malek MH. (-)-Epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle. *The Journal of Physiology* 589: 4615-4631, 2011.